Selected Publications

4. Direct formation of copper nanoparticles from atoms at graphitic step-edges lowers overpotential and improves selectivity of electrocatalitic CO2 reduction.
Burwell, T., Thangamuthu, M., Aliev, G. N., Ghaderzadeh, S., Kohlrausch, E. C., Chen, Y., Theis, W., Norman, L. T., Fernandes, J. A., Besley, E., Licence, P. and Khlobystov, A. N.
Communications Chemistry 7, 140 (2024).
3. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts.
Cao, K., Zoberbier, T., Biskupek, J., Botos, A., McSweeney, R. L., Kurtoglu, A., Stopiello, C. T., Markevich, A. V., Besley, E., Chamberlain, T. W., Kaiser, U. and Khlobystov, A. N.
Nature Communications 9, 3382 (2018).
2. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.
La Torre, A., Åhlgren, E. H., Fay, M. W., Ben Romdhane, F., Skowron, S. T., Parmenter, C., Davies, A. J., Jouhannaud, J., Pourroy, G., Khlobystov, A. N., Brown, P. D., Besley, E. and Banhart, F.
Nanoscale 8, 15079 - 15085 (2016).
1. Transition metal complexes of a salen-fullerene diad: redox and catalytically active nanostructures for delivery of metals in nanotubes.
Lebedeva, M. A., Chamberlain, T. W., Davies E. S., Mancel, D., Thomas, B. E., Suyetin, M., Bichoutskaia, E., Schröder, M. and Khlobystov, A. N.
European Journal of Chemistry, 19, 11999-12008 (2013).