Selected Publications

26. Machine learning insights into predicting biogas separation in metal-organic frameworks.
Cooley, I., Boobier, S., Hirst, J. D. and Besley, E.
Communications Chemistry 7, 102 (2024).
25. Recent developments in the methods and applications of electrostatic theory.
Besley, E.
Accounts of Chemical Research 56, 2267-2277 (2023).
24. Manipulating interactions between dielectric particles with electric fields: A general electrostatic many-body framework.
Hassan, M., Williamson, C., Baptiste, J., Braun, S., Stace, A. J., Besley, E. and Stamm, B.
Journal of Chemical Theory and Computation 18, 6281-6296 (2022).
23. Effective Hamiltonian of crystal field method for periodic systems containing transition metals.
Popov, I., Plekhanov, E., Tchougréeff, A. and Besley, E.
Molecular Physics, e2106905 (2022).
22. Electrostatic interactions between spheroidal dielectric particles.
Derbenev, I., Filippov, A., Stace, A. and Besley, E.
Journal of Chemical Physics 152, 024121 (2020).
21. Interaction between particles with inhomogeneous surface charge distributions: Revising the Coulomb fission of dication molecular clusters.
Filippov, A. V., Chen X., Harris, C., Stace, A. J. and Besley, E.
J. Chem. Phys. 151, 154113 (2019).
20. Electrostatic interactions between charged dielectric particles in an electrolyte solution: constant potential boundary conditions.
Derbenev, I. N., Filippov, A. V., Stace, A. J. and Besley, E.
Soft Matter 14, 5480-5487 (2018).
19. An integral equation approach to calculate electrostatic interactions in many-body dielectric systems.
Lindgren, E. B., Stace, A. J., Polack, E., Maday, Y., Stamm, B. and Besley, E.
Journal of Computational Physics 371, 712-731 (2018).
18. Electrostatic interactions between charged dielectric particles in an electrolyte solution.
Derbenev, I. N., Filippov, A. V., Stace, A. J. and Besley, E.
J. Chem. Phys. 145, 084103 (2016).
17. Progress in the theory of electrostatic interactions between charged particles.
Lindgren, E. B., Chan, H.-K., Stace, A. J. and Besley, E.
Perspective Article, Phys. Chem. Chem. Phys. 18, 5883-5895 (2016).
16. A general geometric representation of sphere-sphere interactions.
Chan, H.-K., Lindgren, E. B., Stace, A. J. and Bichoutskaia, E.
Springer International Publishing 2015, Nascimento, M. A. C. et al. (Eds.)
Frontiers in Qunatum Methods and Applications in Chemistry and Physics,
Progress in Theoretical Chemistry and Physics 29, 29-36 (2015).
15. Electrostatic force between a charged sphere and a planar surface: a general solution for dielectric materials.
Khachatourian, A., Chan, H.-K., Stace, A. J. and Bichoutskaia, E.
J. Chem. Phys. 140, 074107 (2014).
14. Approaches to modelling irradiation-induced processes in transmission electron microscopy.
Skowron, S. T., Lebedeva, I., Popov, A. and Bichoutskaia, E.
Feature Article, Nanoscale 5, 6677-6692 (2013).
13. Electronic excitation in bulk and nanocrystalline alkali halides.
Bichoutskaia, E. and Pyper, N. C.
J. Chem. Phys. 137, 184104 (12 pages) (2012).
12. Electrostatic analysis of the interactions between charged particles of dielectric materials.
Bichoutskaia E., Boatwright A. L., Khachatourian A. and Stace A. J.
J. Chem. Phys. 133, 024105 (10 pages) (2010).
11. Theoretical study of the structures and electronic properties of all surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
Bichoutskaia E. and Pyper N. C.
J. Chem. Phys. 129, 154701 (15 pages) (2008).
10. A theoretical study of the cohesion of noble gases on graphite.
Bichoutskaia E. and Pyper N. C.
J. Chem. Phys. 128, 024709 (11 pages) (2008).
9. Polarizability of the iodide ion in crystal.
Bichoutskaia E. and Pyper N. C.
J. Phys. Chem. C 111, 9548–9561 (2007).
8. A fundamental global model for the structures and energetics of nanocrystalline ionic solids.
Bichoutskaia E. and Pyper N. C.
J. Phys. Chem. B 110, 5936–5949 (2006).
7. Intermolecular potential energy extrapolation method for weakly bound systems: Ar2, Ar-H2 and Ar-HF dimers.
Bichoutskaia, E., Tulegenov, A.S. and Wheatley, R.J.
Molecular Physics 102, 567–577 (2004).
6. Extrapolation methods and scaled perturbation theory for determining intermolecular potential energy surfaces.
Hodges, M.P., Bichoutskaia, E., Tulegenov, A.S. and Wheatley, R.J.
International Journal of Quantum Chemistry 96, 537–546 (2004).
5. Ab initio spectroscopy of Van der Waals molecules: a comparison of three different theoretical methods applied to NeHF and NeDF.
Newton, D.P., Bichoutskaia, E. and Wheatley, R.J.
Chemical Physics Letters 393, 70–75 (2004).
4. Intermolecular potentials from supermolecule and monomer calculations.
Wheatley, R.J., Tulegenov, A.S. and Bichoutskaia, E.
International Reviews in Physical Chemistry 23, 151–185 (2004).
3. Perturbative, acausal effects in ultracold non-crossing atomic collisions.
Bichoutskaia, E. and Crothers, D.S.F.
Journal of Physics B: Atomic Molecular and Optical Physics 36, 11–18 (2003).
2. On the semiclassical approach to cold atomic collisions.
Bichoutskaia, E., Crothers, D.S.F. and Sokolovski, D.
Proceedings of the Royal Society of London A 458, 1399–1410 (2002).
1. Semiclassical analytical approach to the description of quasimolecular optical transitions.
Devdariani, A., Bichoutskaia, E., Tchesnokov, E., Bichoutskaia, T., Crothers, D.S.F., Leboucher-Dalimier, E., Sauvan, P. and Angelo, P.
Journal of Physics B: Atomic Molecular and Optical Physics 35, 2469–2476 (2002).