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ABSTRACT: We derive a rigorous analytical formalism and propose a numerical method for the quantitative evaluation of the
electrostatic interactions between dielectric particles in an external electric field. This formalism also allows for inhomogeneous
charge distributions, and, in particular, for the presence of pointlike charges on the particle surface. The theory is based on a
boundary integral equation framework and yields analytical expressions for the interaction energy and net forces that can be
computed in linear scaling cost, with respect to the number of interacting particles. We include numerical results that validate the
proposed method and show the limitations of the fixed dipole approximation at small separation between interacting particles. The
proposed method is also applied to study the stability and melting of ionic colloidal crystals in an external electric field.

1. INTRODUCTION
The ability to control the behavior and interactions of neutral
and charged particles with externally applied electric fields has
significant implications for many areas of fundamental and
applied science.1−10 The use of electrospray to promote the
surface assembly of nanoparticle films has been shown to yield
regular arrays when undertaken in the presence of an electric
field.1 The application of an electric field during the
preparation of organic solar cells by spray deposition has
been found to improve the efficiency of power conversion.2 In
electrostatic powder coating, the presence of an electric field
can improve particle transfer efficiency and the control of film
thickness.3 Electric fields can also facilitate the separation and
removal of charged particles from such environments as the
flue gas in coal-fired power stations.4 The self-assembly,
interactions, structure, and dynamics of colloidal suspensions11

and binary nanoparticle crystals12 can be manipulated in a
controlled�and often reversible�manner, using external
electric fields.
Upon exposure to an external electric field, a dipole moment

is induced on particles that may lead to a dramatic change in
the macroscopic properties of their assemblies or suspensions.
In suspensions, an applied external electric field may cause
electrorheological effects where the viscosity of a suspension
increases by several orders of magnitude leading to a liquid−

solid phase transition, which is typically reversed as soon as the
field is removed.13,14 Dipole interactions induced by an applied
field will alter the structure of a suspension causing changes in
flow behavior. The possibility of rapid switching from one state
to another has led to a variety of industrial applications,
including nanoparticle-based displays5 and the use of Janus
particles in biomedical applications and computer screens.6

Janus particles, as both solid and liquid droplets, have
demonstrated their potential for microsensors and actuators,
microfluidics applications, and the stabilization of emulsions.7

It has been demonstrated that Janus particles can be activated,
oriented,8,9 manipulated,10 and rotated7 by an electric field.
An advantage of manipulating particle interactions by an

applied electric field is that it does not require additional
chemical modifications of the solvent or the particles, and the
interactions remain adjustable, fully reversible, and instanta-
neous. The interaction of charged dielectric (polarizable)
particles with an external electric field represents an additional
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contribution to the electrostatic interaction energy, which
consists of Coulomb terms and charge-induced, many-body,
multipolar interactions. In contrast to isotropic Coulomb
forces, induced many-body multipolar interactions are
anisotropic in nature and can give rise to unique crystalline
and noncrystalline structures, especially in an applied electric
field. These induced charge interactions play an important role
in a variety of fundamental processes, such as the nucleation,
growth, and melting of crystals, glass transitions, and various
interfacial phenomena.15−19 Chemical and biological examples
include atmospheric processes, such as dust particle agglom-
eration20 and aerosol growth21 in the planetary environments,
the accumulation of red blood cells,22 and the assembly of
colloidal particles in dilute solutions.23 In many of these
applications, charge may accumulate at certain positions on the
surfaces of particles (functional groups, structure defects, etc.),
which can be represented by surface point charges.
Analytical methods for the accurate prediction of electro-

static interactions between dielectric particles are mainly
restricted to the case of two particles. In the special cases of
axial symmetry, an exact analytical solution of the two-body
problem can be derived.24,25 Analytical solutions have also
been derived for simple two-body problems involving surface
point charges in vacuum26 and in the presence of external
solvents.27−30 However, the two-body expansion series of the
electrostatic potential must be truncated, which ultimately
yields an approximation. By analogy with the mean-field
theory, local expansions of the many-body problem (see, e.g.,
ref 31) have also been suggested. These expansions reduce the
problem to a one-body system by considering the effect of the
electric field induced by all but one particle, and by solving the
one-body electrostatic problem for each particle iteratively and
self-consistently until the desired convergence is achieved.
While this approach yields some insight into the description of
a many-body system at a low computational cost, the iterative
procedure can fail to converge especially at short separation. A
mathematically more rigorous approach is to start with a global
many-body formulation of the problem and interpret the
many-body expansions as a block-Jacobi iteration scheme,
where each block corresponds to one particle.
In a many-body formalism, the interaction of several

dielectric particles can be described by a generalized Poisson
equation, which, in turn, can be reduced to a boundary integral
equation (BIE) representing the induced surface charge on the
particles. Numerical methods such as the Boundary Element
Method (BEM)32,33 or the Method of Moments (MoM)34−36

can be viewed as a discretization of an appropriate BIE. The
method of image charges37−40 can be also used or combined
with MoM to offer a hybrid discretization approach.41

Nevertheless, it is important to provide a rigorous character-
ization and mathematical framework of the exact solution,
which contains no discretization errors. A mathematically well-
founded approach to this problem has been proposed by
Lindgren et al.,42 which formulates the many-body electrostatic
problem, in terms of a BIE of the second type and uses a
spectral Galerkin approximation to solve the resulting
equations. This mathematical formalism allows for a rigorous
convergence and complexity analysis of the induced surface
charge, electrostatic interaction energy, and net forces acting
on each particle (see refs 43−45), since the continuous
solution and the Galerkin approximation are both well
characterized. In the same contribution, it is mathematically
proven that (i) the proposed method scales linearly in

computational cost, with respect to the number of particles,
and (ii) the approximation error does not degrade as the
system size increases.
This paper extends the framework of Lindgren et al.42 to

include two fundamentally different physical effects, namely,
the interaction of a many-body system with an external electric
field and the presence of localized charge on the surface of a
particle as described by point charges. The inclusion of these
effects adds significant complexity to the mathematical model
due to the nondecaying character of the external electric
potential that does not vanish at infinity and the presence of
singularities arising in the context of surface point charges.
However, incorporating these important effects into the
existing methodology broadens considerably its applicability
and provides a versatile method for studying many important
physical, chemical, and industrial processes previously
inaccessible to accurate computation. Part of this work was
conducted within the thesis by Baptiste.57

An additional aspect of this work is a derivation of the
electrostatic interaction energy that is based only on quantities
defined on the surfaces of particles, such that the negative
gradient of this expression, with respect to the positions of
particle, yields the electrostatic force. The developed formalism
can explain mechanisms underpinning the structural stabiliza-
tion of ionic colloidal crystals and their melting in an external
electric field. Colloidal suspensions are widely used to study
phase behavior in real space as the constituent nanometer- to
micrometer-sized particles can be observed directly.16,46−48

Versatile model colloidal systems of charged polymethyl
methacrylate (PMMA) particles have been studied compre-
hensively in the literature, because of the large range of size,
charge, and structure that can be formed,49−51 and their
structures are analogous to atomic and molecular crystals, with
regard to symmetry and phase behavior.
Leunissen et al.52 showed that electrostatic interactions

between PMMA particles of opposite charges can be tuned to
form a diverse range of unique binary crystal structures. They
demonstrated that these soft colloidal structures can be
manipulated in a controlled and often reversible way using
an external electric field, much as previously reported for
electronic ink.53 The model proposed here is capable of
quantitative predictions of many-body electrostatic interactions
in an applied external electric field and reveals the fundamental
principles driving the formation of interesting patterns in
PMMA colloidal suspensions, as observed by Leunissen et al.52

The presented work is organized as follows. In Section 2, we
describe the basic concepts of the many-body electrostatic
problem and introduce the methodology (Subsections
2.1−2.3), which we extend to derive a single general expression
for the electrostatic interaction energy between particles
containing localized surface point charges and in the presence
of an external electric field (Subsection 2.4). In calculations,
these two additional features can be used independently. In
Section 3, we present numerical results validating our method
and show the limitations of the induced fixed dipoles
approximation (Subsection 3.1). The proposed method is
then applied to study the stability and melting of ionic colloidal
crystals in an external electric field (Subsection 3.2). Final
remarks and conclusions are followed by two appendices
containing additional mathematical considerations and proofs.
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2. FORMULATION OF THE ELECTROSTATIC
MANY-BODY FRAMEWORK

We consider a physical system of N nonoverlapping dielectric
spherical particles, defined by their radii { }=ri i

N
1, centers { }=xi i

N
1,

and dielectric constants { }=i i
N

1, immersed in a background
medium (solvent) that has a dielectric constant of κ0 > 0. The
many-body system is considered at rest. The spherical particles
are described as open balls denoted by { }=i i

N
1 with surfaces

{ }=i i
N

1. The surfaces of the dielectric particles represent the
boundary ∂Ω between the interior Ω− and the exterior Ω+ of
the particles. We assume that (i) this surface ∂Ω carries a given
free charge distribution σf and (ii) there is no charge in the
interior of the particles, i.e., in Ω− (See Section 1 of the
Supporting Information for a precise mathematical description
of these quantities). To account for the point-charge
contribution to the surface free charge, the free charge σf is
split into two contributions:

= +f s p (1)

Here, σs ∈ L2(Ω) corresponds to the square-integrable part of
the surface charge, whereas σp is the point-charge contribution
to the free charge represented by a linear combination of one
or several Dirac delta distributions per particle:

= =
qp

j

N

k

N

j k z
1 1

,

j

j k

p

,
(2)

where

q zj k j k j, ,

for all j = 1,..., N and k = 1, ..., Np
j.

We define an external potential Φext with associated external
electric field Eext ≔ −∇Φext, which is not limited by the
constraint that Φext tends to zero at infinity. We consider the
external potential to be harmonic, i.e., ΔΦext = 0, so that the
charges creating the external field are not considered within the
system. Furthermore, the electric field Eext is not restricted to
be uniform. Finally, we assume that the system of dielectric
particles does not affect the external field Eext, for instance,
through polarization, which justifies the use of our terminology
“external”.
Our aim is to determine the total surface charge on each

dielectric particle after taking into account both the free charge
σf, as well as the bound charges resulting from polarization
effects due to the presence of charged neighboring particles
and the effects of an external electric field. Using the total
surface charge, we are able to deduce other physical quantities
of interest such as the electrostatic forces and energy resulting
from the interaction of N charged dielectric spheres both with
each other and with an external electric field.
In order to determine the total surface charge, we first derive

equations governing the total electrostatic potential. We show
that the total electrostatic potential can be used to deduce the
required total surface charge, as well as the subsequent physical
quantities of interest. The main challenges in achieving our aim
are to work with the singular nature of the point-charges σp
and the external potential Φext, which does not decay to zero at
infinity.
2.1. Formulation Based on Partial Differential

Equations. The problem of the electrostatic interaction
between N charged dielectric spheres can be described by a

partial differential equation (PDE)- based transmission
problem. To this end, we define the total potential (Φtot)
and the corresponding total electric field (Etot):

+tot ext

+E E Etot ext

where E is the perturbation of Eext, which is due to the presence
of dielectric charged particles, and Φ is the corresponding
perturbation potential, such that E = −∇Φ. Standard
arguments from the theory of electrostatics in dielectric
media imply that the total potential Φtot satisfies the following
transmission problem:

Here, κ is the dielectric function, which takes the value of κi on
the spherical particle Ωi and κ0 on Ω+ (medium), and Φtot
and κ∇Φtot are jump discontinuities defined by

where η(x) is the normal unit vector at x ∈ ∂Ω pointing
toward the exterior of the particles.
Generally, eq 3 is ill-posed as can be seen, for instance, by

observing that if σf ≡ 0, then any constant function Φtot will
satisfy this equation. In order to obtain the correct total
potential Φtot, we make use of the relation Φtot = Φext + Φ and
first derive a well-posed equation for the perturbed electrostatic
potential Φ. Using decomposition (eq 1), elementary algebra
shows that Φ satisfies the following transmission problem:

where ∂nΦext denotes the normal derivative of Φext on the
boundary ∂Ω.
PDEs similar to the transmission problem (eq 4) have

previously been considered in the literature (see, e.g., refs 42
and 43); however, the key novelty of eq 4 is the addition of
contributions due to an external electric field and the presence
of point charges on the surface of dielectric particles. These
additional terms require significant modifications to earlier
definitions43−45 of the electrostatic force and interaction
energy for the N-body charged dielectric spheres, and they
present additional challenges in the efficient numerical
implementation.
In addition to the presence of the highly nonregular point-

charge term σp, another difficulty in solving the transmission
problem (eq 4) is the fact that the equation is posed on the
entire space 3. Indeed, since the potential Φ decays a priori
only as |x|−1, a naive truncation of the computational domain in
an effort to use classical algorithms, such as the finite element
method, leads to significant errors. The usual approach to
circumventing this problem is to appeal to the theory of
integral equations and reformulate the transmission problem
(eq 4) as a so-called “boundary integral equation” (BIE) posed
on the interface ∂Ω. This is the subject of the next subsection.
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2.2. Formulation Based on Boundary Integral
Equations. In order to describe fully the integral equation-
based approach to the problem of electrostatic interaction
between charged dielectric spheres, we require additional
notions. First, we define the single layer potential of some
density ν, denoted , as a mapping with the property that

| |
+x

y
x y

y x( )( )
( )

4
d

(5)

It can be shown that, for any density ν, is a harmonic
function in Ω− ∪ Ω+, which additionally satisfies the following
jump conditions:

As a consequence, it is possible to consider a restriction of the
single layer potential defined through eq 5 on the boundary ∂Ω
and thereby define the so-called “single layer boundary”
operator, denoted with as the improper integral

| |
x

y
x y

y x( )( )
( )

4
d

Note that, occasionally, it will be necessary to consider the
“local” single layer potential and boundary operators defined
on an individual sphere i ∈ {1, ..., N}. We will denote these as

i and i , respectively. Finally, let us remark that is an
invertible operator.
The surface electrostatic potential λ ≔ Φ|∂Ω is now

described by the following boundary integral equation:

= + +

DtN

1
( ) ( )s p n

0

0

0

0

0
ext

i
k
jjjjj

y
{
zzzzz

(6)

Here, the notation DtN is used to denote the local Dirichlet-
to-Neumann (DtN) map on the surface ∂Ω (see Section 1 of
the Supporting Information).
An equivalent reformulation of the BIE (eq 6) for the

induced surface charge can be achieved by applying 1 to
both sides of the equation, and defining ν ≔ 1 , which
yields the following BIE:

= + +DtN
1

( ) ( )s p n
0

0 0

0

0
ext

(7)

In eq 7, the quantity of interest ν, which we call the induced
surface charge, represents (up to a scaling factor) the total
surface charge on each dielectric particle after taking into
account both the free charge σf and the bound charge resulting
from polarization effects, due to the presence of any remaining
charged particles and the effect of an external electric field.
More precisely,

• σf represents the free charge on each particle;
• σ b , w h i c h i s d e fi n e d a s

+( )(DtN )nb 0 ext , r e p r e s en t s t h e
bound charge on each particle;

• κ0ν, which is defined as κ0ν = σf + σb, represents the total
surface charge on each particle.

A simple manipulation of eq 7 yields the following relation
between the surface charge ν and the surface electrostatic
potential λ:

= + + +DtN
1

( ) ( )s p n
0

0 0

0

0
ext

(8)

Equation 8 implies that, once λ is known, the charge
distribution ν can be computed using the purely local DtN
map. We also remark here that the relation between the PDE
(see eq 4) and the BIE (see eq 6) representations of the
electrostatic potential can be clearly established since λ is
simply the restriction (more precisely, the Dirichlet trace) of
the electrostatic potential Φ on the boundary ∂Ω. Thus, for
any point x ∈ Ω− ∪ Ω+, we have Φ(x) = x( )( )1 =

x( )( ), and we therefore also have Φtot(x) = x( )ext +
x( )( ).

As emphasized above, an important technical difficulty in the
analysis of eq 6 is the presence of the low-regularity point-
charge term σp, which requires special treatment in the design
of efficient numerical methods. The BIE (see eq 6) has
previously been the subject of extensive analysis in a simpler
case when surface point charges and the external field are
absent, i.e., when σp ≡ 0 and Φext ≡ 0. We first briefly
summarize this methodology and explain how the BIE (see eq
6) can be solved in this simple case before turning our
attention (in Section 3) to the more-complex problem of
describing surface point charges and an external electric field.
2.3. Methodology in the Absence of Surface Point

Charge and External Field. In the absence of both the
point-charge contribution to the surface free charge and an
external electric field, the boundary integral in eq 6 reads as

=DtN
10

0 0
s

i
k
jjjjj

y
{
zzzzz (9)

Equation 9 is solved using a Galerkin discretization with an
approximation space constructed from the span of finite linear
combinations of local spherical harmonics on each sphere ∂Ωi
(an exact definitions of the spherical harmonics and the
approximation space W max can be found in Section 1 of the
Supporting Information). More precisely, the Galerkin
discretization of the BIE (9) reads as follows. Let max be a
fixed discretization parameter, we seek the Galerkin solution

W
max

max, which satisfies, for all test functions,

W
max

max the equation

=

DtN ,

1
( , )

L

L

0

0 ( )

0
s ( )

max max max
2

max
2

i
k
jjjjj

i
k
jjjjj

y
{
zzzzz

y
{
zzzzz

(10)

The Galerkin solution
max
and the test function

max
can be

expanded as a finite linear combination of basis functions. This
ansatz allows us to reduce the Galerkina discretization (eq 10)
to a linear system of equations for the unknown expansion
coefficients of

max
. Thus, eq 10 yields the linear system

=A F (11)

where the solution matrix A and the vector F are defined as
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[ ]

[ ]

A

F

DtN ,

1
( , )

ij
mm

m
j

m
j

m
i

L

i
m

s m
i

L

0

0 ( )

0
( )

i

i

2

2

i
k
jjjjj

i
k
jjjjj

y
{
zzzzz

y
{
zzzzz

(12)

where m
i denotes the spherical harmonic of degree and

order m on the sphere ∂Ωi and the indices { }i j N, 1, ..., ,
{ }, 0, ..., max , and | | | |m m, . A more-detailed

definition of m
i can be found in Section 1 of the Supporting

Information, and a detailed explanation of how to compute the
entries in the solution matrix A and vector F can be found in
Lindgren et al.42 Here, we simply remark that, apart from the
diagonal terms (i = j), computing the entries of the solution
matrix and vector F requires evaluating a double integral on
the unit sphere. This typically requires the use of numerical
quadrature, for which purpose Lebedev grid points are used.
It is also possible to use a modification of the classical Fast

Multipole Method (FMM) to speed up computation of the
vector F and matrix-vector products involving the dense
solution matrix A. Essentially, the FMM allows computing the
action of the single-layer boundary operator on an arbitrary
element of the approximation space with linear scaling
computational cost (with respect to N). Since the DtN map
is a purely local operator (diagonal in the basis of local
spherical harmonics), the solution matrix A does not need to
be explicitly computed and stored, and its action on an
arbitrary vector can be calculated with linear scaling cost.
Further details on the FMM implementation can be found in
Lindgren et al.42 Once the vector F has been computed and
the procedure for applying the solution matrix A to an arbitrary
vector in the approximation space is set up, the linear system
(eq 11) can be solved using a Krylov subspace solver such as
GMRES (see Bramas et al.44 for a detailed convergence
analysis of GMRES, as applied to this linear system).
We can now turn our attention to calculation of the

approximate electrostatic energy and force. The approximate
electrostatic interaction energy of a dielectric N-body system is
given by

=

1
2

( , )
1
2

( , )s L
j

N

s j
jj
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where = |js, s j
and W ( )jj

jmax
max is the approximate

self-potential generated by the free charge σs,j on sphere ∂Ωj in
the absence of other spheres. More precisely, it is defined as
the solution to the local Galerkin discretization

=

DtN ,

1
,

jj
j j

j jj jj

L

j s j
jj

L

0

0 ( )

0
,

( )

j

j

max max max
2

max
2

i
k
jjjjj

i
k
jjjjj

y
{
zzzzz

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

In the definition of the electrostatic interaction energy (eq 13),
the first term can be interpreted as the total electrostatic energy
of the system while the second term, involving the summation,
can be seen as the self energy.

Next, we derive an expression for the approximate
electrostatic forces. As a first step, if

max
denotes a solution

to the Galerkin discretization (10) for a given free charge σs,
then we define the approximate induced surface charge

max
as

the unique element of the approximation space W max (defined
in Section 1 of the Supporting Information) which satisfies

=( , ) ( , )L L( ) ( )max max
2

max max
2 (14)

In other words,
max
is simply an approximation of the exact

induced surface charge ν, which physically represents the total
surface charge on the dielectric spheres that includes
polarization effects. Therefore, we use

max
to derive an

expression for the approximate electrostatic force acting on the
dielectric particles.
In practice,

max
is not determined using eq 14, which

requires the computationally expensive inversion of the single-
layer boundary operator V. Instead, a careful examination of
the Galerkin discretization (eq 10) reveals that

max
satisfies the

relation (cf, eq 8)

= +DtN
10

0 0
smax max

max

(15)

where s
max is the best approximation of σs in the

approximation space W max . Consequently, once the linear
system (see eq 11) has been solved, only purely local
operations involving the DtN operator are required to obtain

max
.
The approximate electrostatic force acting on the dielectric

particle is now given by

E( , )i
i

L0 exc ( )i
max

max
2 (16)

Ei
exc is the i-excluded electric field generated by the
approximate induced surface charge

max
, i.e., the vector field

given by

=E x x( ) ( )( )i
i iexc ,max max (17)

where |i , imax max
, and ∇ denotes the usual gradient, taken

with respect to Cartesian coordinates. The i-excluded electric
field Ei

exc is the part of the total electric field generated by the
approximate induced charge

max
that interacts with (i.e., exerts

a net electrostatic force on) the dielectric particle Ωi. A
description of how to practically compute Ei

exc in the current
boundary integral framework can be found in ref 45.
Consider the definitions of the approximate electrostatic

interaction energy and force, given as eqs 13 and 16,
respectively. A key result45 establishes that these are related
by the identity

= ix inti

max max

where x i
denotes the gradient taken with respect to the

location of the center xi of the sphere ∂Ωi.
The Galerkin nature of the method we present here allows

for a precise mathematical analysis, in terms of accuracy, with
respect to max and complexity with respect to N, which was
previously discussed in Hassan et al.43−45 and also included the
detailed description of the linear scaling of the method and the
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accuracy of predictions for the electrostatic energy and
forces.45 However, the model is limited to the assumptions
made at the beginning of Section 2.3, namely, it does not
account for the presence of surface point charge and the effect
of an external electric field. This extension and generalization is
the subject of the following section.
2.4. Extension to Include an External Electric Field

and Surface Point Charges. Turning our attention to the
boundary integral, eq 6 is central to this study and describes
the electrostatic interaction of dielectric spheres in the
presence of both an external electric field and point-charge
contributions to the free charge residing on the particle surface.
To begin, we define the external charge as σext≔ −(κ −

κ0)∂nΦext, which is simply the external electric field
contribution to the right-hand side of the boundary integral
eq 6. The Galerkin discretization of the BIE (eq 6) can be
written as

= + +

DtN ,

1
( ( ), )

L

s p L

0

0 ( )

0
ext ( )

max max max
2

max
2

i
k
jjjjj

i
k
jjjjj

y
{
zzzzz

y
{
zzzzz

(18)

As stated previously, this Galerkin discretization (eq 18)
yields a linear system of equations for the unknown local
spherical harmonics expansion coefficients of

max
of the form

=A F (19)

where the solution matrix A is defined precisely as done
previously through eq 12 and

[ ] ( , )i
m

m
i

L ( )imax
2 (20)

for { }i N1, ..., , { _ _ }0, ..., (m (ax) , and | |m . Deter-
mining the new vector F requires some additional work due to
the presence of the point-charge term σp. To this end, let zj ∈
∂Ωj ⊂ ∂Ω. The definition of the single-layer boundary operator
implies that, for any q , and, all x in ∂Ω with x ≠ zj, we

have
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and, therefore, the vector F in eq 19 can be defined as
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(21)

Since the solution matrix A is exactly as before (see Section
2.3), one can use the same linear solver routine to approximate
the solution to eq 19. Having solved the underlying linear
system, we can now compute further (approximate) physical
quantities of interest.
In computing the approximate electrostatic forces, if

max

denotes a solution to the Galerkin discretization (eq 18) for a
given free charge σf = σs + σp and external electric field Eext,
then we define, as in eq 14, the approximate induced surface

charge
max
that generates the surface electrostatic potential

max
as the solution to

=( , ) ( , )L L( ) ( )max max
2

max max
2 (22)

In practice,
max
can be determined again using the following

relation (c.f., eq 15), which can be deduced from the Galerkin
discretization (eq 18):

= + + +DtN
1

( )0

0 0
s p extmax max

max max max

(23)

where s
max , p

max , and ext
max are the best approximations or

projections (in the L2-sense) of σs, σp, and σext in the
approximation space W max defined in Section 1 of the
Supporting Information. The approximate net electrostatic
force acting on the dielectric particle described by the open
ball Ωi, i ∈ {1, ..., N} is now given by

+E E( , )i
i

L0 exc ext ( )i
max

max
2 (24)

where we remind the reader that Ei
exc is the i-excluded electric

field, which is defined analogously to eq 17. Let us remark here
that Ei

exc can practically be computed by adapting the
procedure stated in ref 45 to the current setting of surface
point charges and external electric field, which is not a difficult
generalization.
In contrast to the definition of the electrostatic forces, the

definition of the electrostatic interaction energy is not
straightforward in the current setting. On the other hand, in
the chemical literature, the net force acting on a given
dielectric particle is frequently defined as the negative-sphere-
centered gradient of the interaction energy. Keeping this
relation in mind, the approximate electrostatic interaction
energy of the system that corresponds to the approximate
electrostatic force (see eq 24) is given by

+ + + +
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where we denote = |js, s j
, |jp, p j

and we write ext
max

for the best approximation of λext ≔ Φext|∂Ω and
W ( )jj

jmax
max for the approximate self-potential on sphere

∂Ωj in the absence of the external field Eext and all other
spheres. The latter quantity is formally defined as the solution
to the local Galerkin discretization
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With the definitions of the approximate electrostatic
interaction force and energy (described by eqs 24) and 25,
respectively), we can demonstrate that the electrostatic forces
are indeed realized as the negative sphere-centered gradients of
the interaction energy.
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Theorem 2.1. Let int
max denote the approximate interaction

energy and i
max , denote the approximate electrostatic force acting

on the dielectric particle Ωi as given by the def initions described by
eqs 25 and 24, respectively. Then it holds that

= ix inti
max max

(26)

where x i
denotes the gradient taken with respect to the location of

the center xi of the sphere ∂Ωi.
The proof of Theorem 2.1 can be found in Section 2 of the

Supporting Information. Let us return to eq 25 that defines the
electrostatic interaction energy of our system. Several com-
ments are now in order.
First, it is important to emphasize that eq 25 includes both

the energy due to the interaction between the dielectric
particles themselves, as well as the energy arising from the
interaction of particles with the external electric field.
Second, eq 25 has an interpretation in terms of the total and

self electrostatic energies. Indeed, the combination of the first
three terms in eq 25 can be interpreted as the total electrostatic
energy of the system, while the fourth term, involving the
summation, can be seen as the self electrostatic energy of the
system. We emphasize that, because of the presence of the
point-charge contribution σp, both the total energy and the
self-energies are infinite as in the case of fixed Coulomb point
charges. However, when writing the interaction energy as
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each of the terms is finite and, thus, the interaction energy is a
well-defined quantity.
Finally, it is possible to rewrite eq 25 for the electrostatic

interaction energy in a more physically intuitive form, in terms
of the electric fields that appear in the PDE formulations (see
eqs 3 and 4), leading to the following theorem.
Theorem 2.2. Let λext denote the restriction of Φext to ∂Ω, and

let λ denote the solution to the boundary integral eq 6 for a given
f ree charge σf = σs + σp and external electric f ield Eext. Then, for
any open ball r of radius r > 0, which is large enough to contain
Ω−, the exact electrostatic interaction energy of the system, denoted

int, satisf ies the relation
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Here, λjj is the exact self-potential only on sphere ∂Ωj in the
absence of an external field Eext and all other spheres, and it is
defined as the solution to the local BIE:
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Moreover, Ej j and Φjj are the “self electric field” and “self
electrostatic potential”, respectively, of the jth dielectric
particle, i.e., the electric field and potential respectively
produced only due to sphere ∂Ωj in the absence of both the
external field Eext as well as the other spheres. The proof of
Theorem 2.2 can be found in Section 2 of the Supporting
Information.
The five terms in eq 28 which constitute int all have

physical interpretations. Indeed, the first integral can be seen as
the total electrostatic energy associated with an electric field
Etot. The second integral can be interpreted as the self-energy
associated with the free charge σf = σs + σp on the particle
surface. The third term is the self-energy of the external electric
field Eext. Finally, the last two terms can be interpreted as the
boundary terms that, in general, may not vanish at infinity but
yield an expression independent of the positions of the
particles. Theorem 2.2 establishes that, in the exact case, i.e.,
when the discretization parameter lmax → ∞, the definition of
the interaction energy, derived from the integral equation
formalism and given by eq 25, coincides with the definition of
the interaction energy (up to some additional boundary terms)
in any open ball r that is large enough to contain Ω−, as
derived from the PDE picture and given through eq 28.
Consider once again eq 24, which defines the net

electrostatic force acting on dielectric particle Ωi. It is possible
that one could be interested only in a portion of this
electrostatic force without the so-called “self-force”. The self-
force is the force that acts on the dielectric particle Ωi in the
absence of all other interacting particles but still in the presence
of the external field Eext, i.e., the force that would act on the
particle if it were the only one exposed to the external field.
Mathematically, this new approximate net electrostatic force
acting on the dielectric particle Ωi, i ∈ {1, ..., N} is given by the
expression
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where ii
max
is the total surface charge (including polarization

effects) on ∂Ωi in the absence of all other interacting particles
but in the presence of the external electric field. Mathemati-
cally (c.f., eq 23),
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Corresponding to the approximate net electrostatic force given
by eq 29, we have the following approximate interaction
energy:

+ +

+ +
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j j j
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1
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(30)

The force (see eq 29) subtracts the force that each single
particle would be exposed to due to the external field in the
absence of the other particles. The corresponding energy
expression (eq 30) is then such that the force (eq 29) equals
minus the sphere-centered gradients of the energy (30)

following similar arguments as used in the proof of Theorem
2.1.

3. CASE STUDIES AND DISCUSSION
In this section, we benchmark the developed methodology
starting with a single particle in the external field. When a
uniform external electrical field Eext is applied to a dielectric
particle, redistribution of the surface charge creates a dipole
aligned in the direction of the applied field. This effect is
illustrated in Figure 1a where, for a neutral particle, the
calculated variation in the surface charge density is shown for
Eext = 1000 V/m.
The dipole induced by the applied field is defined classically

as54

Figure 1. (a) Surface charge density on a neutral dielectric particle (κ = 10, r = 5 μm) placed in an external electrical field of Eext = 1000 V/m. (b)
Surface charge density on the neutral particle shown in panel (a), calculated at different external electrical field strengths (Eext = 600, 1000, and
2000 V/m). (c) Surface charge density on the particle described in panel (a) with a model surface point charge of 0.2e placed at α = π/2, as
indicated by a small dotted circle.

Figure 2. Interaction energy between two neutral dielectric particles (r1 = r2 = 5 μm and κ1 = κ2 = 10) in an applied electric field, as a function of
the separation distance. Dashed line represents an approximation of two fixed dipoles, as defined by eq 33; solid line represents the calculation
using eq 25, taking into account the separation-dependent particle polarization. The strength of the applied electric field is 100 kV/m (red), 200
kV/m (blue), and 300 kV/m (black). The interaction occurs in a vacuum, i.e., κ0 = 1.
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where r is the particle radius, ϵ0 is the permittivity of free space,
and ϵ is the relative permittivity of the particle, with respect to
the medium (ϵ = κ/κ0). The dipole (see eq 31) can be
represented by the surface charge distribution as

=
+
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cos extext 0
i
k
jjj y

{
zzz (32)

A charged particle would also experience a force acting in the
direction of the applied field,54 and, in the case of an
inhomogeneous distribution of free surface charge, the particle
will rotate to minimize the interaction energy with the
field.55Figure 1c shows the distribution of the surface charge
density, as a function of the angle α defined in Figure 1a. These
calculations were completed using a sufficient value of the
discretization parameter lmax to achieve the convergence of the
interaction energy to the eighth decimal place. The value of
lmax was evaluated for each study: particles with a surface point-
charge (Figure 1c) required at least an approximation with lmax
= 40 to achieve convergence (visually in the plots) at all angles
α (a value of lmax = 45 was finally used with 3074 Lebedev
integration points), while uniformly charged particles placed in
an electrical field required at least lmax = 30 (and lmax = 35 was
finally used with 1730 Lebedev integration points).
The interaction energy between two fixed dipoles, as defined

by eq 31, is given by

=
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where R is the separation distance between their centers
denoted by the vector R. It is convenient to express the
direction of the dipoles p1 and p2, with respect to the vector R,
using polar coordinates, such that

· = pRp R cos( )i ii
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int can then be rewritten as
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3.1. Separation-Dependent Particle Polarization. At
short separation distances, we note a significant difference in
the accuracy between the approximation of two fixed dipoles
(eq 33) and the model derived here, which takes into account
the separation-dependent particle polarization.57Figure 2
shows the calculated interaction energy between two neutral
particles of identical size and composition (r1 = r2 = 5 μm and
κ1 = κ2 = 10) exposed in vacuum to a uniform external electric
field of varied strength. This classical result54 is reproduced by
the dashed lines in Figure 2 for three different values of the
external electric field strength. When the dipoles are aligned
with the vector R, i.e., when sin θ1 = sin θ2 = 0 and cos θ1 =
cos θ2 = 1 (or −1), their interaction is attractive, i.e.,

p p( , )1 2int =
p p

R2
1 2

0
3 . If the dipoles are aligned perpendicular

to vector R, then sin θ1 = sin θ2 = 1 (or −1), cos θ1 = cos θ2 =
0, and the resulting interaction is repulsive with p p( , )1 2int =

p p

R4
1 2

0
3 , which is exactly a factor of 2 smaller in absolute value

than p p( , )1 2int and of opposite sign. In both cases, the
interaction energy decays as 1/R3, and if the field strength is
halved, the interaction energy is reduced by a factor of 4.
Dielectric particles immersed in an external electric field also

experience additional attractive forces at short separation
distances due to induced multipolar interactions, which are
taken into account in eq 25. As Figure 2 shows, these induced
attractions are much stronger in the case of int, because of the
close proximity of regions of surface charge density of opposite
sign residing on neighboring particles. The polarizing effects of
surface charge become more significant at separation distances
comparable to the size of the particles. In the case of attraction,
the interaction energy between particles can be twice as large
as that predicted by the approximation of fixed dipoles (eq 33).
Consequently, at short separation distances, a quantitatively
accurate account of the interaction energy (and the force) can
only be achieved through a realistic description of surface
charge polarization, i.e., a description beyond the induced
dipole lmax = 1 approximation as we describe here, where, in
the case of Figure 2, lmax = 30 with 1454 Lebedev integration
points was used.
The nature of the attraction at short separations is also

critically influenced by polarization of the medium, as shown in
Figures 3 and 4. When the dielectric constant of the medium κ0
is greater than that of the particles κi, shielding by the medium
reduces the strength of the attractive interaction between
particles. Figure 3a shows the most pronounced case of such a

Figure 3. Interaction energy between two neutral particles (r1 = r2 = 5 μm) in an external electric field of 200 kV/m as a function of their dielectric
constant. Dashed line represents the approximation of two fixed dipoles as defined by eq 33; solid line represents the calculation using eq 25. The
surface-to-surface separation distance is (a) 10−3 μm, (b) 5 μm, and (c) 100 μm. The interaction happens in a medium with κ0 = 10. Note the
change of scale along the y-axis.
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shielding effect at 10−3 μm surface-to-surface separation. At a
large separation, as shown in Figure 3c, the shielding effect
becomes negligible. When κ0 < κi, the interaction is much
stronger when particle polarization is taken into account, as
confirmed in Figures 3a and 4a, and also in Figure 2. Figure 4
supplements these observations with calculations of the
interparticle interaction energy for a large range of values of
the dielectric constant of the medium�from 1 (vacuum) to
100. The simulations in both Figures 3 and 4 required
spherical harmonics of the 30th degree (i.e., lmax = 30) with
1454 Lebedev integration points for the evaluation of eq 30.
3.2. Angular Dependence of Particle Interactions in

an External Electric Field. Many chemical problems
involving, for example, the adsorption of ions and protonation
or deprotonation of functional groups on surfaces, require
consideration of particles with an inhomogeneous distribution
of surface charge, where the interaction is also dependent on
the orientation of the particles. The special case of a neutral
surface containing a point charge has been discussed in
Filippov et al.,26 where the four extreme orientations of two
point surface charges were considered in several different
chemical scenarios; this work26 is in excellent agreement with
the method presented here. For the general case, κi > κ0, the
orientation of the particles shown in Figure 5 is the most
attractive scenario in the absence of an external electric field.
Furthermore, an inhomogeneous surface charge distribution,
such as a point charge placed on a neutral sphere, breaks the
axial symmetry (except for a few specific cases), thus
presenting a more complex system.
As illustrated in Figure 2, the interaction between two

particles in the presence of an external electric field has a
strong directional dependence. If the strength of the applied
electric field is high, the interaction between particles
containing surface point charge follows the trends seen in
Figure 2. In this case, the dominant contribution to the
interaction energy/force comes from a field-induced dipole−
dipole interaction. When both particles have the same
dielectric constant (see the solid and dashed lines in Figures
5a−c), a strong attractive interaction occurs when the field is
acting parallel to particle alignment (Figure 5a: θ = 0; and
Figure 5c: θ = π); however, if κ0 > κi (dashed line), the dipole−
dipole interaction is reduced due to the medium shielding
effect. In Figure 5b, where the applied field acts in the direction
perpendicular to particle alignment (θ = π/2), the interaction

is driven by the repulsive dipole−dipole interaction. If κ1 < κ0 <
κ2 (dot-dashed lines) or κ2 < κ0 < κ1 (dotted lines), the
dominant dipole−dipole interaction is repulsive when the field
is parallel to particle alignment, and it is attractive when the
field is perpendicular to the particle alignment, as the dipoles
point in opposite directions in the latter case. At smaller
magnitudes of applied electric field, an additional contribution
to the interaction energy from the surface point charges
becomes significant, leading to more subtle effects. The
strength of the interaction in this case is governed by the
total surface charge represented by fixed point charges and
induced surface charge. This behavior can be understood
through eq 25 by realizing that p ext

max max for weak external

fields and p ext
max max for strong external fields. However, as

these studies refer to charged particles, the interaction energies
in both Figures 5 and 6 are calculated via the evaluation of eq
30 in order to only study the interaction of the particles with
each other.
The effect of orientating an applied external field on the

interaction energy between two particles is detailed in Figure 6.
With reference to Figure 2 for neutral particles, the most
attractive interaction corresponds to the field orientation
where the induced dipoles are aligned parallel with vector R.
As the applied field rotates, the repulsive interaction between
the regions of polarized charge of the same sign becomes
stronger. At the angle corresponding to zero interaction
energy, the opposing attractive and repulsive interactions
cancel out. At the point of smallest separation, the exact value
of this angle deviates from that predicted by eq 33 for two
fixed-size dipoles as the induced polarization affects the
interparticle interaction at all angles of rotation. Fixed dipole
interactions go to zero at θ ≈ 0.96 rad, showing slight
variations in the value of this angle if accounting for
polarization effects. Polarization effects and the geometry of
the problem are also responsible for the repulsion being
smaller in magnitude than the attraction, which is expected
given the results shown in Figure 2. For the case κ2 < κ0 < κ1,
i.e., where one particle is less polarizable and the other more
polarizable than the medium, the nature of the interparticle
interaction in the applied electric field is inverted as shown by
dot-dashed line in Figure 6a. When the applied field is parallel
to vector R, the two like charged regions residing on the
surface of the particles are closest, thus causing repulsion;
when the field is perpendicular to the particle alignment (θ =
π/2), the closest regions of high charge density are of opposite
sign and attractive in nature. This result can be readily
understood by an analysis of the field induced dipole given by
eq 31 and by considering the resultant sign of the product p1·
p2.
With the addition of a point charge to the surface of each

particle, the interaction energy described by eq 25 is again
driven by the total surface charge density having both ext

max and

p
max components. For the case of κ1 = κ2 = 20 polarization due

to the point charge leads to a more attractive interaction at θ =
π where the total surface charge at 10−3 μm surface-to-surface
separation (s) increases due to the applied field; the interaction
is less attractive at θ = 0 as the total charge at the closest s
value decreases due to the field. The same reasoning can be
applied to the case of κ1 = κ2 < κ0 but with the opposite overall
effect. Similarly, in the case of κ1 < κ0 < κ2, the general shape
can be attributed to the effects captured in Figure 6 (left) for

Figure 4. Interaction energy between two neutral particles (r1 = r2 = 5
μm and κ1 = κ2 = 10) in an external electric field of 200 kV/m as a
function of the dielectric constant of medium: (a) κ0 ranging from 1
(vacuum) to 100; (b) expansion of the region for κ0 values between
10 and 45, highlighting minor extrema. Dashed line represents the
approximation of two fixed dipoles, as defined by eq 33; solid line
represents the calculation using eq 25. The surface-to-surface
separation is 10−3 μm.
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neutral particles. The deviation in the interaction energy at θ =
0 and θ = π for the cases where κ2 ≠ κ1 is due to the
polarization caused by the point charge on the surface of the
neighboring particle.
In conclusion, the results presented in Figures 2−6 agree

with the classical picture of interaction between two fixed-size
dipoles, while showing variations in the strength of such
interaction due to particle polarization, which are substantial
when the interparticle separation is comparable to the size of
the particles. A quantitative description of charged particles
with inhomogeneous surface charge distributions interacting in
an external electric field can be obtained readily using the
formalism presented in Section 2.4.

3.3. Melting Ionic Colloidal Crystals in External
Electric Fields. A better understanding of opposite-charge
colloidal interactions could facilitate the controlled production
of binary crystals with nanometer-sized constituent particles,
which will ultimately find applications in advanced photonic
materials.56 Leunissen et al.52 investigated the formation of
apolar colloidal crystals consisting of poly(methyl methacry-
late) (PMMA) particles with opposite, dissimilar charges and
different sizes suspended in a density matching mixture of
cyclohexyl bromide (CHB) and cis-decalin. The particle charge
was regulated by the addition of tetrabutyl-ammonium
bromide (TBAB) salt, which also controlled the Debye
screening length. The authors52 reported that, for a broad
range of particle sizes and charges, the PMMA particles formed

Figure 5. Interaction energy between two dielectric particles (r1 = r2 = 5 μm) containing a surface point charge of 50e, as a function of the strength
of the applied external field: κ1 = κ2 = 20 (solid line), κ1 = κ2 = 5 (dashed line), κ1 = 20 and κ2 = 5 (dotted line), and κ1 = 5 and κ2 = 20 (dot-dashed
line). The interaction occurs in a dielectric medium with κ0 = 10 at the surface-to-surface separation of 10−3 μm. Illustrations alongside each graph
show the orientation of the external electric field parallel with (panels (a) and (c)) and perpendicular to (panel (b)) the alignment of the
interacting particles.
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body-centered cubic-type (cesium chloride) crystals, which
could be reversibly destabilized by the application of an electric
field.
The latter behavior can be explained by calculating the

electrostatic force that charged particles experience in an
external electric field. A force acting in the direction of the
applied field creates a surface charge distribution different from
that in the absence of the field (see Figure 1). When exposed
to a sufficiently high electrical field, the dipolar nature of the
surface charge distribution leads to repulsion between particles
in the plane perpendicular to the direction of the field,54

behavior similar to that shown in Figure 2.
If the movement of surface charge causes a colloidal crystal

to destabilize, then the energy required could be of significant
practical interest, which would require the evaluation of eq 25;
however, here, we evaluate eq 30. In the subsequent numerical
results, the interaction energy between particles in the crystal
only has the electrostatic component as described in Section
2.3 of this paper. We further assume a vanishingly small
osmotic pressure, such that the crystals are self-supported by

the cohesive energy; indeed, these were experimental
conditions adopted by Leunissen et al.52

Figure 7 presents the electrostatic energy of a PMMA crystal
both under vacuum and in the presence of a solvent. The
dielectric constant of the latter (κ0 = 5) matches that reported
in experiments by Leunissen et al.52 The model crystal used in
simulations contains 1024 particles, making it smaller than
single crystals formed in experiments. Because of the negative
value of the electrostatic interaction energy, the PMMA
crystals in vacuum are predicted to be stable over a wide range
of charge on the constituent particles. An interesting result
from the calculations presented is that, under vacuum, the
crystal can be stabilized even further with an increase of the
strength of the applied field. This model also predicts that the
PMMA crystal is stable in solvents in the absence of the
applied electric field, but its structure can be destabilized by
application of the field. Therefore, this model implies that if
the solvent is more polarizable than the colloidal particles, then
the crystal becomes unstable with increasing strength of the
external field, as also seen in the experiments reported in
Leunissen et al.,52 where κ0 = 5 was greater than κPMMA = 3.

Figure 6. Interaction energy between two particles (r1 = r2 = 5 μm) in an external electric field of 200 kV/m as a function of the angle of the field
rotation: (a) neutral dielectric particles and (b) dielectric particles with a point surface charge of 50e, as shown in Figure 5. Dashed line: κ1 = κ2 = 5;
solid line: κ1 = κ2 = 20; dot-dashed line: κ1 = 20, κ2 = 5; dotted line: κ1 = 5, κ2 = 20. The interaction occurs in a medium with κ0 = 10 at the surface-
to-surface separation of 10−3 μm. Note that, in the case of uniform surface charge distribution (a) the cases of κ1 = 20, κ2 = 5 and κ1 = 5, κ2 = 20 are
identical.

Figure 7. Interaction energy of PMMA colloidal crystal (κPMMA = 3, r1 = 1.08 μm, r2 = 0.99 μm, lattice parameter al = 2.4 μm), as a function of the
applied electric field. The PMMA crystal is suspended under vacuum (κ0 = 1) and in solvent (κ0 = 5). The charge on PMMA particles is ±100e (a),
± 10e (b), ± 1e (c). In the absence of the external electric field, the interaction energy of the PMMA crystal is small but negative in all three cases.
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If the external field is switched on, the average electrostatic
forces on oppositely charged particles act in opposite
directions along the applied field, eventually causing the
crystal structure to break apart and melt (see Figure 8). A more
subtle change in the electrostatic force due to polarization
occurs in directions perpendicular to the applied field. Figure
8a exhibits several interesting features, including the value of
the field strength at which the average force on a particle in the
direction of the applied field is zero and the point at which it
crosses forces acting in the two directions perpendicular to the

field. As Figure 8 shows, in the absence of an external field all
three components of the net force on each particle have the
same magnitude. At low field strength, the three components
of the force are comparable in magnitude, and when the net
force in the direction of the field is zero, the crystal particles
still experience opposing and equal forces acting in the
perpendicular directions (Figures 8b and 8c). Eventually, the
direction of the force components parallel to the field change
sign and become dominant with a further increase in the field

Figure 8. Average force acting on PMMA particles in the crystal (z1,2 = ±10e, r1 = 1.08 μm; r2 = 0.99 μm) suspended in solvent (κ0 = 5): (a) in the
direction of the applied field (solid lines) and in the directions perpendicular to the field (dashed lines), (b) and (c) scaleup of the forces acting in
the directions perpendicular to the field. The force on negative particles is depicted in blue and the force on positive particles is shown in red.

Figure 9. (a) Wall time for the computation of the energy and forces, with respect to the number of particles; (b) relative accuracy of the forces
with respect to the discretization parameter lmax for systems with a free charge distribution consisting of uniform charge distributions and with point
charges.
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strength, causing displacement of the oppositely charged
particles in opposite directions along the field.
Experimental studies52 have reported observations of

PMMA crystal melting through the application of an electrical
field. At low values of the field strength (∼7 kV/m), a large
CsCl-type crystal was found to be generally disordered.
However, with the increase of the field strength to ∼20 kV/
m, lane formation was observed. These findings can be
explained using the calculations presented here (using
spherical harmonics of the 13th degree with 266 Lebedev
integration points). Disorder and melting of crystals occurs in
the range of electric field values which are greater than the field
strength corresponding to zero interaction energy in Figure 7
(positive interaction energies indicate unstable structures) but
less than the value of the field at which the force components
in Figure 8a are all equal in magnitude. Lane formation is
observed at much higher fields, exceeding the value at which
the force components in Figure 8a are equal. In this case,
strong average forces acting on each particle, either in the
direction of the field (positively charged particles) or
antiparallel to the field (negatively charged particles), cause
their spatial separation and lane formation.
3.4. Linear Scaling and Accuracy. In these final

numerical tests, we benchmark the performance of the
FMM-based implementation of the method. We consider an
arrangement of particles on a regular lattice of size n × n × n,
for n = 5, 7, 9, ..., 17, thus ranging from 125 to 4913 particles. A
uniform electric field of magnitude Eext = 0.5 V/m along the x-
axis is applied, and each particle contains a unit point charge at
the north and south pole alternately. The radii and dielectric
constants are alternating as well with values 3 and 2, and 50
and 300, respectively. The interaction occurs in a medium with
κ0 = 10 and we use lmax = 10. The tolerance for the linear solver
was set to a conservative threshold of 10−10. The results
presented in Figure 9a were performed on a 2016 MacBook
laptop with a 2.6 GHz Intel Core i7 processor and 16GB of
2133 MHz LPDDR3 memory. We observe that the execution
time increases linearly. The change of regime between the first
four data points and the last three is due to FMM adding one
more layer in the tree structure.
We finish this section with a numerical study on the

accuracy in calculating the forces, with respect to the
discretization parameter max . The tolerance for the linear
solver was set to a very conservative threshold of 10−13. Figure
9b shows the relative error in the calculation of the force
vector, with respect to a reference computation with large
enough lmax values for the 5 × 5 × 5 lattice structure, for a
uniform surface charge distribution, and with a surface point
charge. In the presence of (singular) point charges, we observe
an algebraic error decay with respect to lmax, while the scenario
with a uniform charge distribution shows superalgebraic
convergence, which matches the theoretical result of
exponential convergence for the case without an external
field.45

4. CONCLUSION AND OUTLOOK
In this article, a theoretical framework based on boundary
integral equations, suitable for computing the electrostatic
interactions between particles undergoing mutual polarization,
has been generalized to include two important physical effects:
external, harmonic, nondecaying electric fields, and point-like
charges localized on the particles’ surface. Analytical
expressions for the interaction energy and the net electrostatic

forces have been derived that allow computing these properties
in linear scaling complexity, with respect to the number of
interacting particles. The derived expressions ensure that the
negative gradient of the interaction energy, with respect to the
location of any given particle, equals precisely the net force
acting on this particle. The longstanding computational
challenges concerning singularities due to the presence of
surface point-charges and a nondecaying external field, both of
which formally lead to infinite energy if no special
mathematical treatments are applied to the standard formalism,
have been successfully resolved in this work. The developed
formalism has been validated and tested using several
numerical problems and applied to study the stability and
melting of ionic colloidal suspensions in external electric fields.
The proposed methodology can be used in conjunction with

other computational models to include the entropy associated
with thermal effects and determine crystal stability at different
temperatures, or it can be readily combined with estimations of
the van der Waals forces where appropriate. In applications
related to ionic crystals, however, the cohesive energy is
dominated by Coulombic interactions, which are accurately
described in the developed formalism. In this work, the net
electrostatic force on each particle in a crystal has been
computed by taking into account their separation-dependent
polarization. This provides a rigorous and quantitatively
accurate method, which allows one to explain the mechanisms
underpinning electric-field-induced melting processes in ionic
colloidal crystals and compare these predictions with existing
experimental data. Approaches based on the fixed dipole
approximation are not suitable in such cases, since they only
describe the energetics of a chemical (or physical) process at
long separations and are inaccurate when the interaction occur
at distances comparable to the particle size.
Concerning future work, the nonuniform nature of the

surface charge distribution implies that the interacting particles
can no longer be seen as homogeneous. Consequently,
rotational degrees of freedom must be taken into consideration
in particle dynamics simulations based on the proposed
formalism. While the methodology presented here can handle
a single computation of the interaction energy (and force) for a
given geometric configuration, the additional degrees of
freedom must be updated during a time-dependent, dynamic
simulation while respecting the torques acting on the particles.
This will be the subject of a further contribution, which will
provide a complete generalization of the proposed method.
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