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CONSPECTUS: The review improves our understanding of how
electrostatic interactions in the electrolyte, gas phase, and on surfaces
can drive the fragmentation and assembly of particles. This is achieved
through the overview of our advanced theoretical and computational
modeling toolbox suitable for interpretation of experimental observations
and discovery of novel, tunable assemblies and architectures. In the past
decade, we have produced a significant, fundamental body of work on the
development of comprehensive theories based on a rigorous mathematical
foundation. These solutions are capable of accurate predictions of
electrostatic interactions between dielectric particles of arbitrary size,
anisotropy, composition, and charge, interacting in solvents, ionized
medium, and on surfaces. We have applied the developed electrostatic
approaches to describe physical and chemical phenomena in dusty plasma
and planetary environments, in Coulomb fission and electrospray
ionization processes, and in soft matter, including a counterintuitive but widespread attraction between like-charged particles.
Despite its long history, the search for accurate methods to provide a deeper understanding of electrostatic interactions remains a
subject of significant interest, as manifested by a constant stream of theoretical and experimental publications. While major
international effort in this area has focused predominantly on the computational modeling of biocatalytic and biochemical
performance, we have expanded the boundaries of accuracy, generality, and applicability of underlying theories. Simple solvation
models, often used in calculating the electrostatic component of molecular solvation energy and polarization effects of solvent, rarely
go beyond the induced dipole approximation because of computational costs. These approximations are generally adequate at larger
separation distances; however, as particles approach the touching point, more advanced charged-induced multipolar descriptions of
the electrostatic interactions are required to describe accurately a collective behavior of polarizable neutral and charged particles. At
short separations, the electrostatic forces involving polarizable dielectric and conducting particles become nonadditive which
necessitates further developments of quantitatively accurate many-body approaches. In applications, the electrostatic response of
materials is commonly controlled by externally applied electric fields, an additional complex many-body problem that we have
addressed most recently, both theoretically and numerically.
This review reports on the most significant results and conclusions underpinning these recent advances in electrostatic theory and its
applications. We first discuss the limitations of classical approaches to interpreting electrostatic phenomena in electrolytes and
complex plasmas, leading to an extended analytical theory suitable for accurate estimation of the electrostatic forces in a dilute
solution of a strong electrolyte. We then introduce the concept and numerical realization of many-body electrostatic theory focusing
on its performance in selected experimental cases. These experiments underpin, among other applications, electrostatic self-assembly
of two-dimensional lattice structures, melting of ionic colloidal crystals in an external electric field, and coalescence of charged
clusters.
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A. J.; Stamm, B.; Besley, E. Manipulating particle
interactions with electric fields and point charges: A
general electrostatic many-body framework. Journal of
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This work yields a rigorous analytical formalism and an
ef f icient numerical method for the quantitative evaluation of
the electrostatic interactions between dielectric particles in an
external electric f ield. This formalism also allows for
inhomogeneous surface charge distributions.

■ INTRODUCTION
The search for accurate methods providing a general description
and deeper understanding of electrostatic interactions in the gas
phase, in solution, and on surfaces remains a subject of intense
interest.1−5 Gas phase experiments where charged particles
conform to the Rayleigh instability relationship, such as
Coulomb fission of multiply charged clusters and the production
of multiply charged ions through electron impact ionization,6−9

can be readily modeled using electrostatic theory describing the
interaction between two charged dielectric particles in vacuum.1
This theory takes into account charge induced surface
polarization, i.e. an instantaneous redistribution of surface
charge on a particle caused by the presence of external electric
charge. This applies to both particles and results in a static
configuration that leads to overall repulsive or attractive
interactions. The attraction between like-charged particles at
close separation distances is a particularly interesting phenom-
enon which is strongly influenced by the polarization effects.1,10
The two-body formalism1 reproduced closely the measure-

ments of delayed Coulomb fission of size-selected dication
clusters comprising water, ammonia, acetonitrile, pyridine,
benzene;7 triply and/or quadruply charged molecular clusters
of benzene, acetonitrile, and tetrahydrofuran;8 and experiments
on the stability of multiply charged fullerenes as well as carbon
and fullerene clusters.6 This success in interpreting the Coulomb
fission near the Rayleigh instability limit makes the two-body
solution1 a practical alternative to modeling the kinetic energy
release based on the assumption of a uniform distribution of
surface charge.6−8 The electrostatic framework1 has been also
applied to study aerosol growth in the atmosphere of Titan11
and the coalescence of ice and dust particles in the mesosphere
and lower thermosphere of Earth.12
Useful general expansions of the two-body theory1 have been

developed, with particular focus on achieving a reliable

numerical convergence of the analytical expressions describing
the electrostatic energy and force acting between the particles.
These cover a simple extension to include an isotropic and
uniform dielectric medium which offers a quantitative agree-
ment with experimental measurements of the electrostatic force
between chargedmicroparticles suspended in nonpolar solvents,
such as poly methyl methacrylate (PMMA) spheres suspended
in hexadecane.13 The localized surface (point) charges have
been also incorporated9 to describe the electrostatic interaction
between particles with nonuniform surface charge. Other
extensions of the two-body problem include models describing
electrostatic interactions on a surface14 and between spheroidal
dielectric particles.15 The particle−plane model14 has been
applied to describe the interactions between a charged lactose
sphere and a neutral glass surface, and between a charged
polystyrene sphere and a neutral graphite surface.14 In both
experiments, a charged particle was found to be attracted to a
neutral support. The theory confirmed that the attractive force
was mainly of the electrostatic polarization origin and it
extended to a longer range of sphere−plane separations than
previously reported.
The collective behavior and nonadditive nature of the forces

acting on charged polarizable particles in a cluster or lattice
necessitates the application of a many-body theory3 capable of
describing the long-range nature of the Coulomb interactions
and many-body polarization effects. Hence, advanced charged-
induced multipolar solutions to the electrostatic interactions are
required to describe any collection of polarizable charged (and
neutral) particles.4,16 In order to reduce computational costs,
solvation models typically use the simple induced dipole
approximation, which is often sufficient at long separations.
However, as particles approach one another a very significant
number of multipolar polarization terms is required for the
energy to converge to its correct value.17 For many-body
electrostatic problems, quantitatively accurate predictions
require particularly efficient and nontrivial numerical solu-
tions.4,16 A many-body electrostatic method with linear scaling
of the approximate solution with respect to the number of
particles has recently been demonstrated.4 It also has an
additional capability of representing local surface charges as
point charges or as patches through the description of
nonuniform surface charge density.4
These major advancements in electrostatic theory1,2,14,18 and

their numerical realizations4,16 explain how these interactions
can influence the assembly of particles into structured functional
materials, ultimately leading to the discoveries of novel, tunable,
hierarchically structured assemblies and architectures. Particles
may possess geometric, interfacial or compositional anisotropy,
as found in nonspherical and patchy particles,13 colloidal
solutions19 and superlattices.20,21 Assembly of anisotropic
colloids into hierarchically ordered, reconfigurable architectures
provides a basis for the design of exotic new materials and
controllable optical and imaging devices in emerging tech-
nologies. Our current capabilities to produce such materials are
limited by fundamental problems with control and optimization
of the assembly processes. However, a steady increase in the
number of experimental papers investigating spontaneous or
directed electrostatic (self-) assembly indicates significant
interest in this field.

Accounts of Chemical Research pubs.acs.org/accounts Article

https://doi.org/10.1021/acs.accounts.3c00068
Acc. Chem. Res. 2023, 56, 2267−2277

2268



■ ELECTROSTATIC INTERACTIONS IN AN
ELECTROLYTE SOLUTION

Beyond the DLVO Approximation
Electrostatic interactions between charged particles in a medium
govern many important physical and chemical phenomena in
colloidal science,22 complex plasmas,23 biological systems,24 and
atmospheric processes.25 Traditionally, our understanding of
these interactions rely on the well-known Derjaguin−Landau−
Verwey−Overbeek (DLVO) approximation26,27 and its varia-
tions, all of which assume that polarization effects can be
neglected. In ionic atmospheres, solutions to the well-known
Poisson−Boltzmann (PB) equation are held as a gold standard.
While certainly useful for providing physical insights, the PB
equation violates a general reciprocity principle, and we can not
expect the ionic medium to be additive.
If the surface electrostatic potential is relatively low, the

electrostatic force between two small ions can be defined by the
Debye−Hückel approximation

= +F
Q Q

k R
R e

4
(1 )

m

R1 2

0
2 (1)

where κ−1 is the Debye length, R is the separation distance
between two ions represented by point charges Q1 and Q2, km is
the dielectric constant of the medium, and ϵ0 is the dielectric
permittivity of vacuum. A number of attempts have beenmade at
extending the original Debye−Hückel theory of dilute electro-
lytes28 to account for polarization effects and a finite particle size
(note, the DLVO approximation only deals with point charges).
Notably, in the late 1930s Levine29 described the interaction
between two identical colloidal particles with a uniform surface
charge up to the quadrupole term. Almost 35 years later,30 he
extended his solution using an infinite multipolar expansion30
and included the finite region of an ionised medium. However,
the latter solution turned out to be dependent on the choice of
boundary conditions. Separate efforts have been made in this
field to understand the screening effects of concentrated
electrolyte solutions which require the development of nonlocal
electrostatics models in order to describe properly a fine balance
between the local packing effects and the long-range Coulomb
interaction.31,32
In 2016, Derbenev et al.2 developed an extended analytical

solution to address the problem of two charged dielectric
particles interacting in a dilute solution of strong electrolyte.
This methodology is based on an infinite multipolar expansion
of the electric potential, electrostatic force, and surface charge
density in terms of Legendre polynomials, and it accurately
captures polarization effects on the surface of the particles and in
the medium. The polarization model2 requires a small number
of input parameters such as charge, radius, and dielectric
constant of the particles and the permittivity and the Debye
length of the medium. The derived solution describes weak
screening at large interparticle separations, which typically
corresponds to the interactions of small ions with a constant
charge. If only the monopole and dipole terms are considered in
the analytical expansion of the electrostatic force, then the
solution agrees exactly with the classical analytical expressions
for ion−ion and ion−molecular interactions in a medium. The
methodology2 has been validated against experimental measure-
ments33 for two poly methyl methacrylate (PMMA) spheres in a
nonpolar solvent, hexadecane. It also allowed us to assess
quantitatively errors inherent in the DLVO-based approxima-
tions and to show that these approximations do not provide

sufficient accuracy at short separation distances, especially with
increasing asymmetry in charge and/or size of interacting
particles and magnitude or placement of the charges.
Sainis et al.33 have performed optical trap measurements of

the electrostatic force on PMMA spheres (k = 2.6) with a radius
of 600 nm in hexadecane (km = 2.06) containing a soluble charge
control agent of aerosol sodium di-2-ethylhexylsulfosuccinate
(AOT). The electrostatic force was measured for molar
concentrations of AOT corresponding to different values of
particle charge and the Debye length of the medium. These
measurements are presented in Figure 1 together with

predictions of the DLVO theory and polarization model.2 It is
evident that, at separation distances exceeding the Debye length,
the experimental results are correctly described by both
theoretical models. In the region of center−center separation
between 1.2 μm (touching point) and 2 μm, which was not
accessible to experimental measurements, polarization contri-

Figure 1. Experimental measurements,33 shown as diamonds, for the
electrostatic force between two charged PMMA particles (k1 = k2 = 2.6;
r1 = r2 = 600 nm) suspended in hexadecane (km = 2.06) with added
charge control agent (AOT) of different concentrations: AOT = 1mM,
Q1 = Q2 = 63e (a), and AOT = 10 mM, Q1 = Q2 = 60e (b). The force is
also calculated using the DLVO theory and polarizable model2 with
different values of the dielectric constant of interacting particles.
Reprinted with permission from ref 2. Copyright 2016 American
Institute of Physics.
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butions to the electrostatic force are responsible for the small
difference between the DLVO prediction and the polarizable
electrostatic model.2 At the touching point, reduction in the
magnitude of the electrostatic force due to polarization, relative
to the DLVO theory, amounts to just 7%. In experiments by
Sainis et al.,33 the difference between the values of the dielectric
constant of the colloid particles and solvent is very small, and the
magnitude of the charge on the particles is not high enough to
cause significant polarization.
However, the marked difference in polarization of the

particles and the medium will have a significant effect on their
electrostatic interaction,17 leading to a large discrepancy
between the DLVO theory and the more accurate solution.2 If
the dielectric constant of particles in Sainis experiments33 was
different from that of the solvent, the overall polarization effects
would be much stronger, and the DLVO theory would provide
less accurate results. To demonstrate this, two additional
calculations have been added to Figure 1. The dash-dot line
denotes the electrostatic force between two highly polarizable
spheres (k1 = k2 = 80) of the same charge and size as colloidal
particles in the experiment.33 In this case, polarization effects
cause a considerable reduction in the magnitude of the
electrostatic force, amounting at the point of contact to 37%
difference with the DLVO predictions, which describe the
interaction between point charges or not polarizable particles.
The dash-double dot line in Figure 1 represents the case of not
polarizable spheres (k1 = k2 = 1), for which the magnitude of the

force at the contact point is 24% greater than the electrostatic
force predicted by the DLVO theory. An increase in the
magnitude of the repulsive force is caused by the polarizable
medium. This discussion emphasizes the fact that, within the
same chemical system, taking into account polarization effects
can reveal different electrostatic behavior.
The calculations of the electrostatic force2 shown in Figure 1

are underpinned by the accurate predictions of the total surface
charge. Examples of the calculated surface charge distributions
are shown in Figure 2, which correspond to a 600 nm PMMA
particle suspended in hexadecane with a 10 mM molar
concentration of AOT, as used in Figure 1b. At separation
distances comparable to the Debye length of the medium, the
electrostatic interaction between the particles is shielded by the
electrolyte, the surface charge distribution remains close to
uniform (Figure 2a), and the DLVO theory remains to be
reliable. Figure 2b depicts the highly nonuniform surface charge
distribution, depleted at the point of contact due to surface
charge polarization, thus explaining the reduction in the
electrostatic repulsion between the particles described above.
Other examples of strongly nonuniform distributions of the
surface charge are shown in Figure 2: due to dominant
polarization of the particles (Figure 2c) or due to dominant
polarization of the medium (Figure 2d); note that the particle in
Figure 2d is not polarizable. This discussion emphasizes the fact
that, within the same chemical system, taking into account
polarization effects can reveal different electrostatic behavior.

Figure 2.Total charge distribution on the surface of a 600 nm PMMA sphere suspended in hexadecane with 10mMAOT: (a) k1 = k2 = 2.6 and center-
to-center separation between the particles is equal to the Debye length; (b) k1 = k2 = 2.6 and the contact point; (c) k1 = k2 = 80 and the contact point;
(d) k1 = k2 = 1 and the contact point. Reprinted with permission from ref 2. Copyright 2016 American Institute of Physics.
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Generally, a rigorous model of the electrostatic problem in an
electrolyte solution2 can be used more broadly to study colloidal
systems with high and/or widely different dielectric constants
and in a range of different solvent conditions including high
concentrations of electrolyte. This, however, requires a detailed
consideration of the boundary conditions of the problem.
Selection of the Boundary Conditions

Models for electrostatic interactions in an electrolyte solution
developed within the Debye−Hückel approximation, e.g.
Derbenev et al.,2 often assume that free charge on a particle is
constant and uniformly distributed over its surface. These
models typically provide good agreement34 with predictions
from nonshieldedmodels1,35 and experimental measurements of
electrostatic interactions in weak electrolytes.33 However, the
assumption of constant surface charge density is not always
valid, and in some chemical scenarios (typically, in colloid
chemistry) the boundary condition of constant potential needs
to be considered.18 In both cases, the surface of a particle
represents the physical boundary which separates two different
dielectric media, e.g., particle and solvent (or vacuum), leading
to a discontinuity in the electric and dielectric displacement
fields.
For selecting an appropriate boundary condition, we

introduce a simple dimensionless parameter

= v
d
ch

(2)

where τch is the relaxation time of the surface charge, v is velocity
of the particles, and d is the characteristic surface-to-surface
separation between the particles over which the surface charge
or surface potential can change.18 If the particles are stationary
(v = 0) or the time scale of their interaction is much greater than
the characteristic relaxation time of the surface charge (τch ≪ 1)
then ξ ≪ 1 and the boundary condition of constant potential is
applied. Practically, this condition is suitable for the cases where
particles are much larger than the Debye length or if the
concentration of the electrolyte is high. If the particle charging
process is much slower than the time it takes for the particle to
travel the distance equivalent to its size, then ξ ≫ 1 and the
surface charge is taken to be constant. Figure 3 depicts the
relationship between the characteristic time of particle charging
and that of particle displacement for different values of ξ; this
can be a helpful guide for selecting the boundary conditions
when solving the problem of electrostatic interaction between
charged particles.

The velocity in eq 2 depends on the particle motion, either
ballistic or diffusive, which is defined by the mean free path and
the characteristic length of variation in the surface charge or
potential. In the ballistic regime, the mean free path of a particle
is typically much greater than the particle size (as defined by its
radius, a). If v represents the velocity of the thermal motion then
the parameter ξ can be expressed as18

= k
a

k T6m0
5/2

B

(3)

where ρ is the density of the particle, ζ = e(μpnp + μnnn) is the
conductivity of the solution, and μp, np, μn, nn are the mobility
and concentration of positive and negative ions. In the diffusive
regime, when the mean free path of a particle is significantly less
than the particle’s size, the parameter ξ takes the form18

= k k T
a3

m0 B
3

(4)

where η is the dynamic viscosity of the medium.
Equations 3 and 4 complete a simple selection criterion for the

choice of the boundary conditions in the electrostatic problem
solved through the use of the Poisson−Boltzmann equation to
obtain the electrostatic force (or energy) as an infinite series of
the charge-induced multipolar terms. This selection criterion
depends only on the physical properties of the interacting
particles and the interaction conditions. It gives clear, intuitive
guidance to computations based on available experimental data
such as the conductivity and viscosity of a solution and the
dimensions and density of particles.
One observation stemming from eqs 3 and 4 is that the

boundary condition of constant charge (ξ ≫ 1) can be realized
only for particles in the submicrometer size range (a≪ 1 μm) or
for dilute solutions, typically, less than 10−2 mM. For larger
particles, it is important to compare their size with the value of
the mean free path. For example, the mean free path of colloidal
particles in water is λc ≈ 5 × 10−10 m and λc ≈ 10−10 m in
hexadecane, which are both much smaller than the particle size
of an ∼1 μm. These are examples of a diffusive motion which is
typical for electrolyte solutions, while the ballistic motion is
often observed in dusty plasmas. Therefore, the Derbenev et al.
model2 based on the Debye−Hückel approximation can be used
to describe electrostatic interactions in an electrolyte solution,
dusty plasmas, and other complex scenarios involving charged
particles in a neutralizing environment.
An excellent example highlighting the requirement for the use

of constant potential boundary condition is found in the
experimental measurements of Montes Ruiz-Cabello et al.36
where the electrostatic force between charged latex particles has
been recorded at different pH values andKCl salt concentrations
for particles of different sizes. Figure 4 presents experimental
data recorded for a particle radius of 0.97 μm. The surface
potential in this case is Φsurface = 14 mV, which is below the
thermal energy and equates to the zeta-potential.36 For the given
experimental conditions, i.e. KCl concentration of 1mM at pH=
3.0 and T = 298.25 K, the Debye length is approximately 6.9
nm.18 Application of the ξ selection criterion reveals that, at the
considered salt concentration of 1 mM, the constant potential
boundary condition is appropriate if the particle radius exceeds
0.1 μm. The electrostatic force, calculated using the method-
ology,18 has been supplemented with the van der Waals force
using the Derjaguin approximation.37 The comparison of
experimental and theoretical results presented in Figure 4

Figure 3. Selection of an appropriate boundary condition (constant
charge or constant potential) by comparing the characteristic time of
particle charging, τch, and the characteristic time of particle displace-
ment, d/vc. Reprinted with permission from ref 18. Copyright 2018
Royal Society of Chemistry.
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show that the discrepancy between the quantitatively accurate
force18 and its approximation from the DLVO theory can reach
100% at close separation, and a difference of about 10% begins to
accumulate at the separation distances of 2−3 D lengths.

■ THEORY OF MANY-BODY ELECTROSTATIC
INTERACTIONS

Beyond the Image Charge Model
Calculations of electrostatic interactions are often based on the
image charge model, which was proposed in 1845 by Thomson,
later Lord Kelvin, to solve the problem of a point charge located
outside a conducting sphere kept at zero potential. Thomson
used the Legendre polynomials to express the electric potential
due to the actual charge as the potential due to an imaginary
point charge.38 In the late 1990s, the classical Kelvin image
theory for a charged sphere was extended by Lindell39,40 to
include conducting objects of other shapes, such as prolate
spheroids, and dielectric spheres.41−43 Numerous extensions of
the image charge theory are suitable for describing many aspects
of experiment.
Following the ideas of the mean-field theory, Freed44 used a

local expansion of the many-body electrostatic problem in order
to reduce it to a one-body problem. They described the effect of
the electric field induced on a particle by all other particles
present in the system and solved the one-body electrostatic
problem iteratively and self-consistently to achieve the desired
convergence. This approach reduces computational cost, but the
adopted iterative procedure has inherent convergence problems,
especially at short separations. A mathematically more rigorous
approach is to start with a global many-body formulation of the
problem and interpret the many-body expansions as a block-
Jacobi iteration scheme, where each block corresponds to one
particle.
A desirable feature of a useful electrostatic model is its ability

to relate the computed interactions between charged particles to
the origin of the predicted electrostatic behavior rooted in an
accurate account of the surface charge distribution on each

particle. In the many-body setup at short separation distances,
the surface charge distribution can be very complex and is
unique for every geometry and separation distance. A
quantitatively accurate account of the surface charge can explain
many fragmentation and assembly processes, which cannot be
captured by more approximate solutions. Both in static and
dynamics simulations, the instantaneous redistribution of
surface charge can be calculated numerically, e.g. using the
Galerkin method and its derivatives,4,16 or analytically.3 It is not
possible, however, to extract these insights from the image
charge model or mean-field methods.
Multipole expansion approaches4,17,45 have an advantage of

providing physical insight into the electrostatic nature of the
interactions through the predictions of how the surface charge
behaviors. Often, analytical expressions for the surface charge
distribution are quite simple, thus allowing for further testing of
the electrostatic solutions against accurate quantum chemical
methods such as density functional theory.46,47

Numerical Realizations

An accurate description of electrostatic interactions using
multipole expansion methods can become prohibitive in terms
of computation time if the geometry of a chemical system
requires the use of a large number of multipole terms.
Description of electrostatic interactions in many-body dielectric
systems is an intrinsically complex problem as the total charge
distribution on the interfaces, namely, surfaces of all interacting
particles and supports, is a result of the coupled polarization
effects taking place in the particles and medium. In the many-
body setup, each pair interaction cannot be calculated
independently and symmetry constraints, which can be redily
imposed on a two-body system, are not applied to three or more
particles. The interactions of several dielectric particles can be
described by a generalized Poisson equation, which is often
reduced to a boundary integral equation (BIE) representing the
induced surface charge on the particles. Numerical methods,
such as the Boundary Element Method (BEM)48,49 or the
Method of Moments (MoM),45,50 can be viewed as a
discretization of a BIE.
Nevertheless, for a many-body system it is important to

provide a rigorous characterization and mathematical frame-
work of the exact solution, which contains no discretization
errors. This was achieved by Lindgren et al.16 in a well-founded
mathematical approach using a variational formulation of the
problem in terms of a BIE of the second kind and a spectral
Galerkin approximation. Furthermore, no errors were intro-
duced in approximating the geometry of the problem as no
meshing is required, leading to an efficient discretization of
polydisperse configurations. The mathematical formalism16

combines variational aspects of the BEM-based solutions with
the high order character of the MoM. Both the continuous
solution16 and the Galerkin approximation are well charac-
terized and offer a rigorous convergence of the induced
polarization surface charge, the electrostatic interaction energy,
and the net forces acting on particles. The many-body
description,16 based on the second kind BIE, expands on earlier
works, for example, by Juffer et al., who presented a boundary
element method to compute the electric potential for a single
macromolecule in a solvent with given ionic strength,51 and later
extended this method to describe ionic strength by means of
explicit ions for the case of two polarizable regions.52
The solution16 can be applied to a large number of particles of

arbitrary size, charge, position and dielectric constant,

Figure 4. Force between two latex charged particles of radius 0.97 μm
in electrolyte solution at 3.0 pH and 1 mM KCl concentration: filled
circles are the experimental data,36 solid line is the force calculated using
the methodology,18 dashed line is the DLVO prediction using the same
parameters of κ−1 = 6.9 nm andΦsurface = 14mV. In the inset, the relative
difference (in %) between the exact and approximate DLVO force.
Reprinted with permission from ref 18. Copyright 2018 Royal Society
of Chemistry.
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embedded in a homogeneous medium. The computation using
the derived algorithm scales linearly with respect to the number
of particles in the system, and the rigorous tests of the
convergence, timing, and linear scaling can be found in section
3.1 of ref 16. The linear scaling of the problem has been achieved
through the use of a modified fast multipole method (FMM) by
noting that a surface charge represented by a truncated series of
spherical harmonics and a corresponding multipole located at

the center of a sphere representing each particle can be treated as
equivalent. Generally, the complexity of the underlying
expansions scales with the fourth power of the degree of
spherical harmonics and can be reduced to the third power with
more efficient FMM-embedding. This gives the same
asymptotic scaling as a hybrid method proposed by Gan.53,54

In some very specific cases, when azimuthal symmetry can be

Figure 5. Particle dynamic simulation (right) of an experiment by Whitesides and co-workers55 (left). The numbers at the top of each panel are the
maximum calculated surface charge density in nC mm−2. The green/yellow spheres represent PMMA particles (d = 1.59 mm, k = 3.2), and the blue
spheres represent Teflon particles (d = 1.59 mm, k = 2.1). (a) PMMA/Teflon particle number ratio 1:1, qPMMA = +0.31 nC and qTeflon = −0.31 nC
(neutral aggregate); (b) PMMA/Teflon ratio 3:1, qPMMA = +0.31 nC and qTeflon =−0.93 nC (neutral aggregate); (c) PMMA/Teflon ratio 3:1, qPMMA =
+0.31 nC and qTeflon = −0.31 nC (charged aggregate). The time evolution of the interaction energy, in μJ, and the RMS velocity of the particles, in m
s−1, are also included. Reprinted with permission from ref 3. Copyright 2018 Royal Society. Adapted from ref 55 with permission from Springer Nature.
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assumed, quadratic scaling with the degree of spherical
harmonics can be achieved.

■ EXPERIMENTAL CASES
An integral equation approach,16 which through the use of FMM
method scales linearly with respect to the number of particles,
has been combined with a simple solution of the classical
equations of motion to predict time evolution of charged particle
assembly processes (classical dynamics).3 In the following, we
discuss two experiments where electrostatic assembly has been
promoted in the absence of additional constraints, such as
solvent or ionic medium.
Whitesides and co-workers55−57 used contact electrification

to create two-dimensional models of electrostatic self-assembly.
Millimeter-size polymer spheres of varying size and composi-
tion, nylon, Teflon, etc. have been subjected to tribocharging to
accumulate either a positive or negative charge on the order of a
few hundred picocoulombs (pC). Electrostatically driven self-
assembly of these charged particles into different two-dimen-
sional lattice structures has been recorded, with the resultant
lattice motifs varying according to particle charge, size, and the
fraction of each polymer type. Many-body simulations3 explored
an extensive range of the experimental parameter set including
the effects of particle charge, dielectric constant, and the ratio of
the number of negatively and positively charged particles.
Figure 5 summarizes the results of particle dynamic

simulations showing how collections of poly(methyl meth-
acrylate) PMMA/Teflon particles assemble on a surface into a
range of 2D lattice structures depending on the composition and
charge state of the particles. If the PMMA/Teflon number ratio
is 1:1 and the overall system is charge neutral, square
arrangements of alternating PMMA and Teflon particles are
formed (Figure 5a); for a PMMA/Teflon ratio of 3:1 and a
neutral system, hexagonal aggregates with the occasional
presence of pentagons are observed (Figure 5b), and finally,
small sparse aggregates and expelled excess charges are observed
for a PMMA/Teflon ratio of 3:1 and an overall unbalanced
charge in the system (Figure 5c). This is very similar to
experimental observations.55−57 From these simulations, it can
be concluded that the resultant lattice structures are sensitive to
the proportion of negatively and positively charged particles
present in the collection and to the amount of charge on each
particle.
Another experimental example by Lee et al.58 captured images

of submillimetre-size particles clustering in charged granular
streams. Time sequences of falling particles in a vacuum under
gravitational force displayed orbital binary collisions and
clustering events. These experiments differ from those of
Whitesides and co-workers in several ways: first, the particles
were smaller (approximately 300 μm) and carried less charge
(approximately 0.1 pC), but more significantly, the material
used, a composite of zirconium dioxide and silicate, had a much
higher dielectric constant (k = 15) than any of the polymer
spheres used by Whitesides and co-workers (k varies between 2
and 4).
Particle dynamics simulations based on the many-body

polarization electrostatic model3 reproduced the key collision
processes observed in Lee et al. experiments,58 which include
(1) capture of an individual particle by a small cluster, when the
center-of-mass collision energy is lower than the binding energy
of the particle to the cluster or if it is effectively dissipated
through the cluster; (2) particle escape showing an incoming
particle bouncing away from a stable cluster; and (3) cluster

fragmentation seen at high collision velocities leading to a
complete breakup of a cluster.

■ LARGER SCOPE FOR APPLICATIONS AND
CONCLUSIONS

The theories developed can be used not only to understand and
explain experimental findings but also to predict and discover
new phenomena. Lindrgen et al.17 investigated how the
properties of a solvent could either facilitate or suppress
electrostatic fabrication, based on experiments59 involving the
interaction of neutral alumina nanoparticles with a charged
nanodiamond surface. Experiments59 show that neutral alumina
particles will be attracted to the surface if they are immersed in a
low dielectric medium, i.e. insulating fluorocarbon solution,
fluorinert FC-90. Further calculations17 predict that the nature
of this electrostatic interaction can switch markedly from being
attractive to repulsive in a solvent with higher dielectric constant,
for example, acetone.
There are several examples in the literature of deposition

processes pointing at the evidence of a critical charge density
being required for the assembly and growth of thin films.60 For
example, most polyoxometalate clusters (POMs) are soluble in
water but it is widely recognized that it is not possible to
fabricate POMs layers from such polar medium without first
creating a charged substrate.61 Extensive calculations17 have
been undertaken to model the deposition of the Eu-POM onto a
layer of positively charged macromolecules and to describe
experimental conditions required for the successful electrostatic
self-assembly. These calculations generally explore the con-
sequences of charged particles interacting in a wide range of
solvents covering interactions between both opposite- and like-
charged particles and size ratios that span from particles of equal
size to significantly different.
Materials research poses many additional computational

challenges, which require fundamental analytical solutions
capable of quantitatively accurate descriptions of electrostatic
interactions and the interpretation of particle assembly and
fragmentation. External stimuli, such as applied electric fields,
often drive the assembly of particles into new functional forms,
with electromagnetic radiation, localized surface charges,
templating on supporting substrates, different aspect ratio of
building blocks (sphere, rod, wire, disc, ...), adding complexity to
method development.
The formalism16 was extended further by Hassan et al.4 to

include the interactions of a many-body system with an external
electric field and in the presence of localized (point) charge on
the particle surface. These new computational features add
significant complexity to the mathematical model due to the
nondecaying character of an external electric potential that does
not vanish at infinity and due to the presence of singularities
arising in the context of the surface point charge. However,
incorporating these important effects into the existing method-
ology considerably broadens its applicability and provides a
versatile method for studying many important physical,
chemical, and industrial processes previously inaccessible to
accurate computation.
For example, the proposed method4 has been applied to study

the stability and melting of ionic colloidal crystals in an external
electric field. Leunissen et al.22 investigated the formation of
apolar colloidal crystals consisting of PMMA particles of
different size and opposite and dissimilar charges suspended in
a density matching mixture of cyclohexyl bromide (CHB) and
cis-decalin. For a wide range of particle sizes and charges, body-
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centered cubic-type (cesium chloride) crystals were formed,
which could be reversibly destabilized by the application of an
electric field. This behavior was explained by calculating the
electrostatic force acting on charged particles in an external
electric field.4 The force acting in the direction of the applied
field creates a surface charge distribution different from that in
the absence of the field. When exposed to a sufficiently high
electrical field, the resultant surface charge distribution leads to
repulsion between particles in the plane perpendicular to the
direction of the field.
The many-body formalism16 has been further used to identify

nanoparticle lattices and endohedral fullerenes as potential
building blocks for future electronic, magnetic and optical
devices. For example, Miller et al.21 proposed that it could be
possible to design stable nanoparticle lattices composed from
binary collections of endohedral fullerenes.
In conclusion, comprehensive electrostatic theo-

ries1,2,4,5,9,14−16,18 have been developed, rigorously tested and
widely applied to accurately describe and explain fragmentation
and coalescence processes, where induced surface charge
polarization plays a critical role at short separation distances
the region where previous approximate solutions failed to
provide accurate results. The methods developed have been
used to analyze electrostatic effects in a diverse range of
applications including, but not limited to, dusty plasmas and
planetary environments2,11,12,18 Coulomb fission in multiply
charged clusters6−9 and in soft matter,13 including a counter-
intuitive but widespread phenomenon of attraction between
like-charged polarizable particles.10 This continued interest in
new electrostatic solutions is also motivated by emerging self-
assembly processes and packing of nanomaterials,21 often
directed and controlled by external fields,4 templates, or
directing agents.
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