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Abstract
In the present work, we revisit the problem of atomic orbitals from the positions mostly dictated by semiempirical approaches 
in quantum chemistry. To construct basis set, having proper nodal structure and simple functional form of orbitals and repre-
senting atomic properties with reasonable accuracy, authors propose an Ansatz based on gradual improvement of hydrogen 
atomic orbitals. According to it, several basis sets with different numbers of variable parameters are considered and forms 
of orbitals are obtained for the 2nd-row elements either by minimization of their ground state energy (direct problem) or by 
extracting from atomic spectra (inverse problem). It is shown that so-derived three- and four-parametric basis sets provide 
accurate description of atomic properties, being, however, substantially provident for computational requirements and, what 
is more important, simple to handle in analytic models of quantum chemistry. Since the discussed Ansatz allows a generaliza-
tion for heavier atoms, our results may be considered not only as a solution for light elements, but also as a proof of concept 
with possible further extension to a wider range of elements.

Keywords Atomic orbitals · Atoms · Analytic models · Semiempirical methods

1 Introduction

Quantum chemical description of molecules involves one-
electron states, expanded against finite sets of basis func-
tions. Quality and efficiency of electronic structure calcula-
tions and f eatures of their computational implementation 
substantially rely on the properties of the underlying basis 
set. This fact is emphasized in almost each handbook on 
quantum chemistry (see, e.g., [1]) and reflected in the huge 
number of basis sets available in the literature for description 

of various objects and properties [2, 3]. Two major classes 
of basis functions (coming from two main types of objects in 
theoretical chemistry) are local (atomic) basis functions and 
plane waves. Although using the latter is extremely efficient 
numerically, the incurred loss of local chemical information 
generated demand for a posteriori analysis tools projecting 
the results obtained in the plane wave basis onto local basis 
sets as successfully implemented, e.g., in the LOBSTER 
package [4–6]. In this work, we focus only on local atomic 
orbitals, and thus our further discussion will be restricted 
to them.

Atomic functions appear in either numerical (tabular) or 
analytic form [1]. Numerical atomic orbitals (for example, 
Ref. [7]) come from accurate ab initio calculations on many-
electron atoms, but their actual application is restricted to 
very simple and highly symmetric (usually linear) mol-
ecules. By contrast, analytic atomic orbitals (AOs) are the 
main tool of quantum chemistry. Analytic AOs are in their 
turn linear combinations of primitives, the latter being either 
Slater-type (STO) [8] or Gaussian-type functions [9]. The 
numbers of primitives and variable parameters are deter-
mined by two target characteristics of a basis set: flexibil-
ity (growing with number of primitives and parameters) 
and efficiency in computational and analytic applications 
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(obviously decreasing with the numbers of primitives and 
parameters). Balance between these two characteristics 
depends on specific class of problems to be addressed and 
requirements of the method used.

Two complementary approaches may be pointed out in 
quantum chemistry: numerical one, motivated by accurate 
reproduction of different properties with heavy computa-
tional modeling, and analytic one, trying to find conceptual 
explanation of chemical trends within semiempirical ana-
lytic models (in the spirit of works [10–12]; earlier analytic 
models of polyenes which profited from the analogy with the 
translationally invariant models of solids had been studied 
by Lennard-Jones [13] and Coulson [14] and later comple-
mented by electron–electron interaction terms by Misurkin 
and Ovchinnikov [15]). Principal differences in these two 
approaches cause differences in their requirements to the 
basis sets to be used. Numerical treatment can partially 
sacrifice physical clarity to make basis orbitals more para-
metrically flexible and convenient in computational imple-
mentation, and analytic approach, in its turn, can partially 
sacrifice numerical precision to obtain functions of simple 
form, containing parameters with clear physical meaning. 
The latter sets the target for basis sets development from the 
point of analytic quantum chemistry: to employ simple and 
physically reasonable functional forms of the AOs, yield-
ing adequate estimates of the parameters (ultimately, matrix 
elements) of the semiempirical Hamiltonians from these 
orbitals. This problem, however, is not that trivial, since all 
known simplest semiempirical basis sets (single STOs) usu-
ally fail badly in reproducing of one-center core attraction 
parameters (see related discussion in Section S61), while 
more involved basis sets present in the literature cannot be 
used in analytic treatment. Because of that, systematic stud-
ies on the basis sets with a simple functional form, suitable 
for analytic work, are required.

Due to present dominance of the numeric approach in 
quantum chemistry, there are not that many studies of such 
kind in the literature, and a few examples of the basis sets 
potentially usable for that purpose are quite old. For exam-
ple, yet in 1935 Morse et al. [16] proposed basis set with 
simple functional form of orbitals for light elements (see 
below for details), which was later studied by several authors 
(Duncanson and Coulson  [17]; Pujol and Simon [18]). 
Approximately the same time Gombás and Szondy [19, 20] 
developed atomic basis sets of STOs with variable param-
eters, which was actually one of the first prototypes of later 
(more involved) basis sets using STO primitives (e.g., Ref. 
[21, 22]). In Ref. [1], one can find further examples of the 
basis sets with simple forms of AOs used to reproduce exact 

Hartree–Fock (HF) solution for the carbon atom, which are 
actually already quite involved for any analytic applications.

Trying to change this situation, we revisit the problem of 
the AOs having in mind deriving a basis set useful for analytic 
semiempirical approaches similar to those cited above. This 
work should be considered as the first step of such revision, 
where we propose a series of hydrogen-like basis sets and 
test them on 2nd-row elements. We demonstrate the principal 
possibility of using proposed hydrogen-like basis sets by com-
paring calculated atomic properties with both experimental 
data and the results obtained with the Bunge [22] basis sets.

2  Specification of basis sets and methods 
of calculations

The hydrogen-like functions, being the well-known solutions 
for the bound states of one-electron atom (for example Ref. 
[1]), may serve as a starting point in a search for basis sets 
suitable for analytic models of quantum chemistry. Obvi-
ously, they cannot be applied for the many-electron atom 
directly, since only one variable parameter (effective core 
charge Zeff ) makes them too rigid to reflect different screen-
ing patterns (arising from electrostatic interactions) of elec-
trons located in different orbital subshells well known in 
the pseudopotential theory (see [23] and references therein). 
However, hydrogen-like functions have correct radial nodal 
structure assuring the orthogonality of the radial parts of 
the AOs with the different principal quantum numbers n 
belonging to the same azimuthal quantum number l may be 
prototypes for constructing more advanced basis sets.

The hydrogen-like basis functions can be modified in sev-
eral directions to acquire more flexibility, but retaining their 
simple analytic form and satisfying the orthonormalization 
conditions. The simplest way is to use the orthogonality of 
the spherical harmonics with the different azimuthal quan-
tum numbers l. Because of it, effective nuclear charges for 
different l’s may be unequal, yielding the orbital exponents, 
e.g., �1s = Z

(s)

eff
;�2s = Z

(s)

eff
∕2 ≠ �2p = Z

(p)

eff
 for the 2nd-row ele-

ments), keeping the form of the hydrogen-like functions and 
taking Z(s)

eff
 and Z(p)

eff
 for variational parameters. It leads to a 

two-parametric hydrogen-like basis set (H-2 set). For the 
2nd-row atoms, such basis has the form:2 

(1)

R1s(r) = 2�
3∕2

1s
exp

�
−�1sr

�

R2s(r) = 2�
3∕2

2s

�
1 − �2sr

�
exp

�
−�2sr

�

R2p(r) =
2�

5∕2

2p√
3
r exp

�
−�2pr

�

1 Sections numbered SX refer to Section X of the Supplementary 
material.

2 Generalization of eq. (1) for further periodic rows can be obtained 
by inserting in R

nl(r) the orbital exponents �
nl
= Z

(l)

eff
∕n with Z(l)

eff
 ’s as 

variational parameters.
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Although the H-2 basis Eq. (1) is more flexible than purely 
hydrogen-like [1], there is still an obvious physical inconsist-
ency left. Clearly, the effect of the occupied 1s-shell upon 
2s-electrons does not reduce to the bare orthogonality condi-
tion since the 2s- and 2p-shells feel the Coulomb repulsions 
of 1s-electrons differently which translates into the deviation 
of the orbital exponents from the simple �nl = Z

(l)

eff
∕n rule. It 

is impossible to reach with use of the hydrogen-like func-
tions [1], since the non-equivalence of the effective nuclear 
charges for the 1s- and 2s-shells will break their orthogonal-
ity. Thus, we modify the functional form of the AOs to 
restore the orthogonality. It can be done by introducing poly-
nomials P2l+1

n−l−1

(
x,�

(l)

1
,… ,�

(l)

n−l−1

)
 for each value of l, which 

depend on n − l − 1 parameters �(l)

1
,… ,�

(l)

n−l−1
 : the ratios of 

the orbital exponents with the same l and different n’s (the 
ratios of �nminl

 to �nl ). Such polynomials are of the same 
power as the Laguerre polynomials entering the hydrogen-
like AOs [1] with the same indices thus having the required 
number of nodes (details are given in Section S1). For the 
2nd-row elements, such an approach yields the following 
three-parametric generalized hydrogen-like basis set (H-3):

where � = �1s∕�2s and

The H-3 basis set turns into the H-2 set, when the ratio of 
the 1s- to 2s-exponents is equal to that in the hydrogen-like 
setting: � = 2.

It should be noted that the idea, leading to the H-3 
orbitals, is quite similar (but not same) to that used by 
Gombas and Szondy [19, 20]. They as well started from 
the simple STO functional form for the AOs and param-
eterized them. Further, they applied the Schmidt orthogo-
nalization algorithm to restore the orthonormality of the 
orbitals with different effective core charges which assured 
the correct radial nodal structure of so-derived AOs. The 
mixed orbitals coming from the Schmidt procedure cannot 
be characterized by any specific effective core charge and 
become very cumbersome for analytic work, when their 
principal quantum number increases. Thus, to reach the 
same result we change the functional form of polynomial 
coefficients. Our approach keeps the general functional 

(2)

R1s(r) = 2�
3∕2

1s
exp

�
−�1sr

�

R2s(r) = 2N��
3∕2

2s

�
1 −

1 + �

3

�
�2sr

��
exp

�
−�2sr

�

R2p(r) =
2�

5∕2

2p√
3
r exp

�
−�2pr

�

N� =

(
3

1 − � + �2

) 1

2

.

form of the hydrogen-like orbitals (a polynomial guar-
anteeing the required number of radial nodes times an 
exponent) and retains the physical meaning of the orbital 
exponents as of measures of the subshell-specific screen-
ing by lower-lying electrons.

Keeping the number of the involved STO primitives 
constant, the basis can be made even more flexible. A 
four-parametric set (H-4), originally proposed by Morse 
et al. [16], is given by:

where � = �1s∕�
(2)

2s
 , � = �

(1)

2s
∕�

(2)

2s
 and with the single STOs 

for the 1s- and 2p-subshells. Orthonormality of R2s and R1s 
uniquely determines the constants in Eq. (3):

and the 1s- and 2p-orbitals have the same form as in the H-3 
setting Eq. (2). Thus, the H-4 basis turns into the H-3 one 
by making the exponents �(1)

2s
= �

(2)

2s
 ( � = 1 ) in Eq. (3) equal.

It is quite surprising that to the best of our knowledge 
there were no studies on the H-3-like basis sets (for heav-
ier atoms bases, constructed in the same manner as H-3, 
must contain more parameters, so technically they can 
not be called ‘H-3’) in the literature, while the H-4 like 
bases were studied [16–18, 24]. As it is shown below, the 
H-3 basis set allows us to reproduce the atomic properties 
with an accuracy comparable to that of the H-4 one. At 
the same time, the H-3 basis contains parameters of clear 
physical meaning (effective core charges for each subshell 
rendering the respective effective screening by the core 
electrons) and also is easier in analytic treatment (espe-
cially, when it comes to generalization to heavier atoms). 
The explicit presence of the effective core charges in H-3-
like basis sets makes them a promising tool, which will 
hopefully permit to get insight into observable patterns 
of changing in atomic properties. For instance, it may be 
possible to provide a more detailed study of the influence 
of core electrons upon valence state of an atom, believed 
to be the reason of secondary periodicity, firstly noticed by 
Biron [25] and later discussed in more advanced theoreti-
cal terms by Pyykkö [26].

In each of the proposed settings Eqs. (1)–(3), the val-
ues of the orbital exponents may be obtained either in 
the frame of the direct problem: by minimizing the Har-
tree–Fock (HF) energy of atomic ground state ( Φ ) or by 
solving certain inverse problems: fitting the parameters 

(3)

R2s(r) = N��

(
�
(2)

2s

)3∕2[
A exp

(
−�

(1)

2s
r
)
− �

(2)

2s
r exp

(
−�

(2)

2s
r
)]

A = 3
(� + �)3

(1 + �)4

N�� =
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1

1 −
16A
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+

A2

3�3
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1
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(exponents) of the AOs against some external data. We 
shall investigate both approaches for all “hydrogen-like” 
basis sets introduced above.

2.1  Direct problem

Taking Φ as a single Slater determinant (with the amend-
ments necessary to assure the correct spin and symmetry in 
the sense of the old MC SCF theory [27]), one comes to the 
following expression for the energy:

where �R,S are one-electron states occupied in the determi-
nant Φ , ĥ and ĝ are one- and two-electron energy operators:

The average energy of the 1s2sm2pp states (vis. configura-
tion) easily expresses through the core attraction parameters 
(U) and linear combinations ( K1–K6 ) of the Coulomb ( Fk ) 
and exchange ( Gk ) Slater–Condon parameters [28] as:

Exact expressions of the combinations K1–K6 are given in 
Section S2. All parameters entering Eq. (5) depend only on 
the orbital exponents of whatever basis we use (see Section 
S2 for exact formulae), which allows us to write analytic 
expressions for the energy through the variation parame-
ters (exponents) of any basis set. An important observation 
coming from Section S2 is that K1–K6 are all homogeneous 
functions of the 1st degree with respect to the orbital expo-
nents, whereas U’s are combinations of homogeneous func-
tions of the 1st and 2nd degrees. It allows us to use gradient 
method to solve the direct problem: find the minimal value 
of the energy and the corresponding values of the orbital 
exponents.

2.2  Inverse problem

As we mentioned above, an inverse problem can be used to 
determine the orbital exponents for various proposed types of 
the basis sets by fitting them against different types of external 

(4)

E = ⟨Φ�Ĥ�Φ⟩ = �
R

⟨𝜙R
��ĥ��𝜙R⟩

+
1

2

�
R

�
R≠S

�⟨𝜙R𝜙S
��ĝ��𝜙R𝜙S⟩ − ⟨𝜙R𝜙S

��ĝ��𝜙S𝜙R⟩
�

ĥi = −
1

2
∇2

i
−

Z

ri

ĝij =
1

|||ri − rj
|||

(5)

E(n,m, p) = nU(1s) + mU(2s) + pU(2p) +
n(n − 1)

2
K
1

+
m(m − 1)

2
K
2
+

p(p − 1)

2
K
3
+ nmK

4
+ npK

5
+ mpK

6

data. In the present work we consider two inverse problems. 
The first one is based on fitting the orbital exponents against 
available experimental data on atomic spectra. The second 
inverse problem is to fit our approximate radial parts of the 
AOs against the more involved basis set derived from the HF 
calculation and constructed from the extended set of primitives.

2.2.1  Experimental spectra fit

The first investigated inverse problem extracts the exponents 
from the experimental relative energies of atomic configura-
tions. To solve this problem, only the configurations, which 
do not bring any new unknown orbital exponents, should 
be considered. For the 2nd-row element, we consider the 
configurations, having electrons on the 1s-, 2s- or 2p-orbitals 
only (for example, the 1s22s22p13s1 configuration for carbon 
does not satisfy this condition—it brings a new unknown 
exponent for the 3s-subshell). It also needs to be assumed 
that the orbital exponents (and, consequently, the atomic 
parameters) are equal for different configurations.

Simple accounting shows that the total number of 
Km parameters (six) is smaller than the number of the 
Slater–Condon parameters required for description of the 
three involved subshells, which means that these latter 
cannot be all determined by a linear fit of the expressions 
like Eq. (5) against experimental data on the configuration 
energies: ill-defined inverse problem in terms of Ref. [29]. 
Expressing the Hamiltonian parameters involved in the 
energy expression Eq. (5) through the orbital exponents of 
either of AOs Eqs. (1)–(3) brings in additional information 
about the relation between these parameters by this regular-
izing [29] otherwise ill-defined inverse problem.

Even the proposed regularization of the inverse problem 
of determining one- and two-electron parameters with use 
of the AOs model does not allow to uniquely fix the answer 
since the reference “zero” energy of the ground state is 
missing. This lack of data is cured by extending the set of 
spectral data on account of the ionization potentials (IP’s), 
calculated as differences: Ip = E

(
A+

)
− E(A) . For the sake 

of the consistency control, we minimized the energies of the 
cations E

(
A+

)
 with respect to the orbital exponents (that is, 

solved the direct problem for the cations as well). The values 
of E

(
A+

)
 calculated with the exponents optimized for the 

neutral atom are higher than the minimized E
(
A+

)
 by only 

3–5% (for the H-2, H-3 and H-4 basis sets)—imprecision, 
not affecting the trends in the chemical series. Thus, for the 
standard semiempirical setting: the calculation (or analytic 
treatment) performed in a fixed basis, the minimization of the 
cation energy with respect to the exponents is superfluous.

Two types of the ionization potentials (see Table 1) are consid-
ered in the present work: s2pn → s2pn−1 ( IP(1) ) and s2pn → s1pn 
( IP(2) ). Experimental values of IP(1) ’s may be directly found in 
the NIST database [30, 31]. Experimental values of IP(2) ’s are 
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obtained as a sum of IP(1) ’s and the excitation energies of the 
s2pn−1 ions available from the atomic spectra [32].

2.2.2  Fitting against external basis set

Another option for the inverse problem is to seek for the 
orbital exponents yielding the maximum overlap of our 
model AOs Eqs. (1)–(3) with those of some external basis set, 
obtained by highly accurate calculations (ab initio basis sets, 
for example). This problem is easiest to solve and it provides 
fast results on the orbital exponents, allowing to reproduce 
the atomic properties with an accuracy pretty much close to 
that of the reference basis set for each given analytic form of 
the model AOs. In the present work, we use the Bunge basis 
set [22] as a reference for such a fitting also having in mind to 
establish a relation with the procedures of the bonding analy-
sis of solids [4–6], where the latter is used for projecting the 
results numerically obtained in the plane wave setting.

Parameters of the Bunge basis [22], which we use for com-
paring, are known only for neutral atoms and their values are 
not established for cations. Thus we use parameters, obtained 
for the neutral atoms, for the cations as well. Within such set-
ting, the IP’s obtained with the Bunge orbitals are expected 
to be slightly overstated as compared to the experimental 
values. It indeed happens, and the IP’s so calculated are all 
higher than the experimental values by about 0.3–1 eV (see 
Sect. 3.1.3).

3  Results and discussion

3.1  Direct problem

3.1.1  Orbital exponents and shapes of orbitals

The orbital exponents, obtained from the energy minimiza-
tion (direct problem) for H-2, H-3 and H-4 basis sets, are 
collected in Tables 1, 2 and 3 of Section S4. In Section S7, 

the distance dependencies of the radial parts (compared to 
the Bunge orbitals) are shown for all elements of the 2nd 
period. In addition, the overlap integrals with the Bunge 
AOs are listed for all basis sets in Table 4 of Section S4.

As it may be seen from the plots of the radial parts 
shown in Figs. 1–7 (Section S7), the shapes of all orbitals 
obtained within the H-3 and H-4 settings are very simi-
lar to the shapes of the Bunge AOs taken as a reference, 
whereas the 2s-orbital in the H-2 setting differs substan-
tially from the corresponding orbitals in other sets. This 
is also reflected in the overlap integrals: 2s-functions of 
the H-2 basis overlap with the Bunge 2s-AOs by less than 
93%, while typical overlaps of the 2s-AOs for the H-3 and 
H-4 sets arrive to more than 99%. The reason of such devi-
ation was already mentioned previously—the inconsist-
ency of assuming the equal effective core charges for the 
1s- and 2s-electrons in the H-2 basis, making it impossible 
to correctly represent the shapes of the 1s- and 2s-orbitals 
simultaneously. It leads to much less diffuse 2s-orbitals in 
the H-2 basis (overestimated core charge) and, as we shall 
see later, to a poor reproduction of the atomic parameters 
calculated with use of this basis.

As for the H-3 and H-4 basis sets, they, having minimal 
set of primitives (two STO primitives for an 2s-orbital and 
one for each 1s- and 2p-orbitals), allows us to represent 
the shapes of the Bunge AOs (seven STO primitives for 
s- and five for p-orbitals) very closely. Only exceptions 
are 2p-orbitals of oxygen and fluorine, for the reasons dis-
cussed below.

Analyzing the screening constants ( Snl ) derived 
from our calculations on the direct problem for the H-3 
(Table 2) and H-4 sets (for H-4 sets 1s- and 2p-shielding 
constants are very close to corresponding values for the 
H-3 set, because the 1s- and 2p-orbital exponents are simi-
lar in these two basis sets), we may see that the Slater rules 
[8] work pretty good for 1s-orbitals. All screening con-
stants for 1s-orbitals have values close to the Slater value 
of 0.30. The simplest estimate of S1s = 5∕16 = 0.3125 , 
coming from minimizing the energy of the 1 s2 configura-
tion in the field of the nucleus with the charge Z, fairly sets 
a “theoretical” reference point. For the 2p-orbitals of the 
H-3 and H-4 basis sets, the Slater’s rules in their original 
form work not so well, but still we have quite close screen-
ing constants (especially for B, C and N) to those, obtained 
by Slater. For the 2s-orbitals of the H-3 shape, the original 
Slater’s rules do not work at all, which is anticipated, since 
that latter has functional form, differing from one Slater 
used. However, an analogous additive rule fairly applies 
for the 2s-screening constants:

(6)S2s = 0.733n1s + 0.194
(
n2s + n2p − 1

)

Table 1  Terms of 2nd-row ions used in our calculations

Element Ground state State of ion IP(1) State of ion IP(2)

Li 1s22s1 
(
2
S
)

– 1s2 
(
1
S
)

Be 2s2 
(
1
S
)

– 2s1 
(
2
S
)

B 2s22p1 
(
2
P
)

2s2 
(
1
S
)

2s2p1 
(
1
P
)

C 2s22p2 
(
3
P
)

2s22p1 
(
2
P
)

2s2p2 
(
2
P
)

N 2s22p3 
(
4
S
)

2s22p2 
(
3
P
)

2s2p3 
(
3
S
)

O 2s22p4 
(
3
P
)

2s22p3 
(
4
S
)

2s2p4 
(
4
P
)

F 2s22p5 
(
2
P
)

2s22p4 
(
3
P
)

2s2p5 
(
3
P
)



 Theoretical Chemistry Accounts (2019) 138:9

1 3

9 Page 6 of 11

and for the 2p-ones:

where ni is the number of electrons in the ith shell.
The rules for the 2s- and 2p-screening constant corre-

spond to simple relations for the exponents themselves:

valid for Z > 2 . For the 2p-exponent of the H-4 basis, we 
have nearly the same relation as for the H-3 basis:

These expressions together with the calculated values of the 
exponents are plotted in Fig. 1. The coefficients of determi-
nation, characterizing the quality of the fits, are: 
R2
2s
= 0.9999 ; R2

2p
(H − 3) = 0.9958 ; R2

2p
(H − 4) = 0.9916.

3.1.2  Position of the node of the 2s orbital

A remarkable qualitative feature of the basis sets consid-
ered in the present paper is the position r0 of the radial 
node of the 2s-orbitals for all considered forms of the AOs, 
which is almost independent of the basis set (differences 
occur only on the 4th decimal place for all elements except 
Li—for Li on the 2nd decimal place). For any given ele-
ment, it depends on the nuclear charge ( r0 decreases with 
increasing Z). Thus, this point may be considered as a 
characteristic of an element. For the H-2 and H-3 basis 
sets, its explicit expressions are simply:

(7)S2p = 0.885n1s + 0.392
(
n2s + n2p − 1

)
,

�H−3
2s

= 0.403(Z − 1.097)

�H−3
2p

= 0.304(Z − 0.975)

�H−4
2p

= 0.304(Z − 0.972)

Table 2  Screening constants for the orbitals of the H-3 basis set

Li Be B C N O F

S
1s

0.306 0.293 0.289 0.289 0.288 0.288 0.289
 [8] 0.30
 [33] 0.307 0.314 0.322 0.329 0.336 0.343 0.350
S
2s

1.467 1.681 1.842 2.037 2.246 2.439 2.642
 Equation (6) 1.467 1.662 1.856 2.051 2.245 2.440 2.634
 [33] 1.721 2.081 2.441 2.801 3.161 3.522 3.882
S
2p

– – 2.627 2.908 3.208 3.799 4.141
 Equation (7) 2.553 2.945 3.337 3.729 4.120
 [33] – – 2.579 2.911 3.244 3.577 3.909
 = S

2s
 [8] 1.70 2.05 2.40 2.75 3.10 3.45 3.80
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Fig. 1  Orbital exponents as functions of nuclear charge. Left: the 
2s-exponent; right: the 2p-exponent. Color code: blue corresponds 
to the H-3 basis set, green: H-4, orange: H-3, fitted from the Bunge 
AOs, brown: H-3, fitted against atomic spectra
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In the case of the H-3 basis, 2s-orbital exponent may be 
expressed through the 1s-orbital exponent and the position 
of the node as:

With use of the analytic estimate for �1s (coming from the 
energy minimum of the 1 s2 configuration), the 2s-orbital 
exponent turns a function of the nuclear charge and the node 
position:

Since r0 is a function of the nuclear charge as well, it is of 
interest to find a theoretical estimate for it, making it pos-
sible to derive a theoretical estimate for the 2s-orbital expo-
nent through the nuclear charge only. In order to do so, let us 
consider 2s-electron moving in the field of a nucleus and two 
1s-electrons. One-electron effective Hamiltonian for this is:

where v1s(r) is the electrostatic potential of a 1s-electron, 
coming from the averaging of the electron–electron repul-
sion operator over the 1s-states [Section S3, Eq.  (27)]. 
The exact analytic solution for the eigenstates of the Ham-
iltonian Eq. (11) is not feasible, and thus with use of the 
Wentzel–Kramers–Brillouin (WKB) method [34, 35] we 
obtained an approximation as described in Section S3. This 
move leads to the system of equations (Eqs. (30)–(32) of 
Section S3), yielding the position of the node. It may be 
solved numerically, which is done, and results are presented 
in Table 3. Moreover, in Section S3 an analytic estimate of 
the node position is obtained :

(x0 = 1.9893 is the solution of a transcendental equation 
derived in Section S3). As one can see, the numerical 

(8)rH−2
0

=
1

�2s
; rH−3

0
=

3

�1s + �2s
.

(9)�2s =
3

r0
− �1s.

(10)�2s =
3

r0
− Z +

5

16
.

(11)Ĥ = −
1

2
∇2 −

(
Z

r
− 2v1s(r)

)
,

(12)r0 =
x0

Z − 1

solution of the WKB problem yields a very good estimate 
(except for Li) of the results obtained within the direct prob-
lem. This expression works very well and may be useful in 
some applications.

3.1.3  Spectra and ionization potentials as derived 
from direct problem

The core attraction and Slater–Condon parameters calcu-
lated with use of the introduced basis sets with the exponents 
derived from the solution of the direct problem compared to 
their “experimental values” (those extracted from the available 
spectral data) or those calculated previously in the literature 
are presented in Tables 10–16 of Section S5, where we also 
list the values of the first ionization potentials s2pn → s2pn−1 
( IP(1) ) and s2pn → s1pn ( IP(2) ). In Fig. 2 we plot the relative 
errors of the calculated ionization potentials.

Regarding the ionization potentials IP(1) , one can see that 
the H-2 basis gives totally inappropriate results, while the H-3 
and H-4 results look not bad in general, but for oxygen and 
fluorine the relative error is still close to 20%. This is caused 
by electronic correlations not taken into account, throughout 
minimization of the HF energy with respect to the exponents. 
Values of the ionization potential IP(2) for all basis sets (H-3, 
H-4 and Bunge) deviate quite substantially from the experi-
mental data, especially for B (the relative error of 15–20%) and 
C (the relative error of 10–15%).

In Table 4, the relative energies of the terms, calculated 
with the H-3, H-4 and Bunge sets for B, C, N, O and F, are 
compared with the corresponding experimental values. These 
results are characterized by the quantity

calculated for B, C, N and O (for F there are no experimental 
data for the single line, which can be calculated with only 
1s, 2s and 2p exponents) for the H-3, H-4 and Bunge sets 
and plotted in Fig. 3 together with the mean absolute devia-
tion (in the formula N stands for the number of considered 
atomic lines, Ei is the calculated energy of ith transition and 

� =

√√√√√ 1

N

N∑
i=1

(
Ei − E

(exp)

i

E
(exp)

i

)2

⋅ 100%

Table 3  The 2s node position (a.u.) calculated within the direct problem in the H-3 setting and estimated from exact numerical and approximate 
[Eq. (12)] WKB values

Li Be B C N O F

Calcd. 0.867 0.616 0.477 0.390 0.330 0.286 0.252
Numerical WKB 1.082 0.671 0.495 0.394 0.328 0.281 0.246
r
0

0.995 0.663 0.497 0.398 0.332 0.284 0.249
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E
(exp)

i
—its experimental value). Dimensionless quantity � is 

thus the average relative error for the term energies. Being 
compared to the standard mean square deviation, it has that 
advantage that its values do not depend on the range of ener-
gies, and thus it may be considered as a uniform parameter, 
allowing to compare quality of calculations for different 
elements.

As it may be concluded from Fig. 3 for the H-3 basis set, 
the average relative errors lay in the range 20–40%, for H-4 
in the range 15–40% and for the Bunge basis set—15–25%. 
At the same time, mean absolute deviations obtained with 
the H-3 set are actually not much higher (by 0.25–0.40 eV) 
than those obtained with the Bunge set. It shows that the 
term energies calculated with the H-3 set are not that bad as 
it may be concluded from quite high relative errors, coming 
mostly from errors in low-energy transitions.

However, errors in the atomic spectra and IP’s are quite 
high for the H-3 and H-4 basis sets (interestingly, the H-3 
setting permits to reproduce the spectral transitions even 
better than the H-4 setting for C, N and O), and thus results 
should be improved. Two possible ways may be chosen to 
do so. First, we can modify our way of extracting exponents 
from the theoretical model (change the setting of the direct 
problem explicitly accounting the correlations). This will be 
done elsewhere. In the present work, we use another possible 
way to improve our results, based on solution of two inverse 
problems as described below.

3.2  Inverse problems

3.2.1  Spectral data fit

The exponents of the H-3 basis extracted from the spectral 
data for the B, C, N, O and F atoms are plotted in Fig. 1, 
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Fig. 2  The relative errors of the ionization potentials for different 
basis sets. Left: IP(1) ; right: IP(2) . Color code: red corresponds to the 
results obtained in the present work with the Bunge orbitals, purple: 
the same with H-2, blue: with H-3, green: with H-4, yellow: with 
H-3, fitted from the Bunge AOs, brown: with H-3, extracted from 
atomic spectra
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Fig. 3  Errors in the calculated term energies for different basis sets. 
Left: average relative errors ( � ); right: mean absolute deviations. 
Color code red: calculated with the Bunge orbitals; blue: with H-3; 

green: with H-4; yellow: with H-3, fit from the Bunge AOs: brown: 
with H-3, extracted from experimental spectra
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and their numerical values may be found in Table 5 of Sec-
tion S4. Linear fit for these “spectral” exponents yields:

(R2
2s
= 0.9965 ; R2

2p
= 0.9978 ). As one can see, spectral expo-

nents are quite smaller than the theoretical values. It may 
correspond to the implicit influence of the correlation 
effects, covered by the spectral parameterization (especially 
fitted to reproduce experimental atomic properties). It is 
qualitatively clear that correlation effects should decrease 
effective core charges, but explicit quantitative estimates of 
these effects lay beyond the scope of the present paper and 
are postponed for the future work.

Several issues related to this inverse problem should be 
mentioned. First, for the Li and Be atoms there are not enough 
spectral data to extract the orbital exponents, and thus we do 
not consider these elements here. For the F atom, only one 
line suitable for the spectral fit is expected to be present in 
the atomic spectra, but there is no experimental value for it 

�2s = 0.382 (Z − 1.373)

�2p = 0.383 (Z − 2.910)

in the literature. Thus, in this case the orbital exponents were 
extracted from two ionization potentials IP(1) and IP(2) and 
electronic affinity. Another issue relates to the experimental 
data for the boron atom. In the NIST database, one finds the 
relative energies (in eV): 3.55 

(
4P;sp2

)
 , 5.93 

(
2D;sp2

)
 , 7.88 (

2S;sp2
)
 , 8.99 

(
2P;sp2

)
 . This consequently comes from all 

original sources cited by the NIST. However, our calculations 
with the H-3, H-4 (obtained from the direct problem) and the 
Bunge orbitals show the order of terms to be 4P , 2P , 2D , 2S . 
Moreover, it can be easily shown, for example, that in the 
uncorrelated setting:

in contradiction with the NIST ordering. Although one can-
not exclude some extraordinarily strong correlation mani-
festations changing the order of the excited states on the 
energy scale, in the present work we have chosen to arrange 
the experimental energies according to the non-correlated 
(“old”) MC SCF order, leaving the investigation of the other 

E
(
2S
)
− E

(
2P

)
=

6

25
F2
pp

> 0

Table 4  The calculated and 
observed relative term energies

a As it may be seen, the theoretical H-3, H-4 and Bunge basis sets give inverse order of the terms s2p2 
(
1
S
)
 

and sp3 
(
5
S
)
 for carbon. Unlike the situation with boron, noted in the text, in this case one cannot rigorously 

establish any “correct” order of terms within the LS-scheme, since negative core attraction parameters enter 
the expression of terms energy difference (so we have negative and positive contributions and the sign 
of the expression is not definite as it is in the case of boron). However, the H-3 spectral parameterization 
allowed us to reproduce the experimental order of terms. It is, however, highly unlikely that the correlated 
setting assures the experimental order in case of theoretical basis sets since it is largely predetermined by 
the relative positions of the 2s- and 2p-subshells on the energy scale

Element Atomic state H-3 direct H-3 orbital fit H-3 spectral fit H-4 Bunge Exp [30–32]

B: 2s22p 
(
2
P
)

2s2p2 
(
4
P
)

2.92 3.08 3.98 3.73 3.46 3.55

2s2p2 
(
2
P
)

4.95 5.03 5.98 5.71 5.32 5.93

2s2p2 
(
2
D
)

5.63 5.68 6.78 6.40 5.94 7.88

2s2p2 
(
2
S
)

6.31 6.33 7.57 7.09 6.56 8.99

C: 2s22p2 
(
3
P
)

2s22p2 
(
1
D
)

1.77 1.68 1.33 1.80 1.59 1.26

2s22p2 
(
1
S
)

4.44 4.20 3.33 4.50 3.97 2.68a

2s2p3 
(
5
S
)

1.45 1.84 3.63 2.72 2.54 4.16a

2s2p3 
(
3
D
)

7.57 7.66 8.32 8.81 8.04 7.94

2s2p3 
(
3
P
)

9.35 9.34 9.66 10.61 9.63 9.33

2s2p3 
(
3
S
)

15.33 15.03 14.40 16.28 15.01 13.12

N: 2s22p3 
(
4
S
)

2s22p3 
(
3
D
)

3.26 3.07 2.74 3.29 2.89 2.39

2s22p3 
(
2
P
)

5.44 5.12 4.57 5.48 4.82 3.58

2s2p4 
(
4
P
)

10.76 10.81 10.64 12.57 11.30 10.93

2s2p4 
(
2
D
)

17.13 16.83 16.10 18.84 16.97 15.03

O: 2s22p4 
(
3
P
)

2s22p4 
(
1
D
)

2.53 2.35 2.24 2.55 2.19 1.96

2s22p4 
(
1
S
)

6.33 5.88 5.60 6.37 5.49 4.18

2s2p5 
(
3
P
)

16.77 16.87 15.76 19.08 17.06 15.66

F: 2s22p5 
(
2
P
)

2s2p6 
(
2
S
)

22.45 32.96 22.69 36.17 23.93 –
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options along the correlated setting in a line with Ref. [36] 
for the future.

Atomic parameters, obtained with the “spectral” expo-
nents, are listed in Tables  10–16 of Section S5 and in 
Table 4; relative term energies, calculated with the spectro-
scopic H-3 and the Bunge basis sets, are compared with the 
experimental values in Table 4.

As it can be seen from Fig. 2, the ionization potentials 
IP(1) , obtained with the spectroscopically determined expo-
nents of the H-3 basis sets are very close to experimental 
values (maximal deviation of 5%). The spectroscopic H-3 
basis set also gives the best values of IP(2) (better than the 
Bunge basis set), which are very close to experiment (maxi-
mal deviation of 6%). The term energies obtained from the 
spectroscopic parameterization are better then those, calcu-
lated with the Bunge orbitals. It is quite surprising that such 
a simple basis set as H-3 can be minimally adjusted to assure 
even better agreement with experiment than the Bunge basis, 
having seven STO primitives for s- and five for p-orbitals.

3.2.2  Fit against Bunge orbitals

The exponents of the H-3 basis fitted from the Bunge AOs 
for all elements are presented in Table 7 of Section S4 and 
atomic parameters, obtained with these exponents are listed 
in Tables 10–16 (Section S5) and in Table 4. The linear fit 
of exponents vs nuclear charge yields:

(R2
2s
= 0.9999 ; R2

2p
= 0.9980 ). One can see that the 2s and 

2p exponents, obtained here, are smaller than the corre-
sponding theoretical exponents and their values increase 
somewhat slower with Z than the theoretical ones. It corre-
sponds to the tendency, already noted above, that the theo-
retical effective core charges, coming form the SCF setting, 
are overestimated, and decreasing their values (theoretically 
it should come from some correlation effects) allows us to 
reproduce the atomic properties in a better agreement with 
the experimental data.

The ionization potentials and the average relative errors 
in atomic spectra become better than those calculated 
with the H-3 set (relative error in the IP’s is lower than 
5%, and the relative error is in the range 20–35% for the 
atomic spectra), derived from the direct problem. Their 
values predictably converge to the IP’s calculated with the 
Bunge AOs. All these results show that the H-3 basis can 
be parameterized to provide very accurate representation 
of the atomic quantities. It is anticipated that more flexible 
H-4 basis will also be able to reproduce atomic properties 
after similar fitting. However, further exploring the H-4 

�2s = 0.367 (Z − 0.990)

�2p = 0.297 (Z − 1.101)

basis goes beyond our task of developing basis sets suit-
able for analytic treatments.

4  Conclusions

A series of the hydrogen-like basis sets for the 2nd-row 
elements is proposed, and their parameters (orbital expo-
nents) are obtained by solving both direct and inverse 
problems. The orbitals, obtained by solving the direct 
problem within the H-3 and H-4 settings, are shown to 
reproduce atomic properties of 2nd-row elements with 
quite satisfying accuracy. The exponents, obtained by 
solving two inverse problems, show that the considered 
model basis sets may be parameterized up to the level of 
quantitative reproducing of the atomic spectra, sometimes 
even better, than the much more involved Bunge basis sets. 
At the same time, the proposed basis sets (especially the 
H-3 one) have simple functional form, making them eas-
ily useful for analytic models. The linear dependencies of 
the orbital exponents on nuclear charges (extensions of 
the Slater rules) were established, and their accuracy was 
checked for all types of the generalized H-like basis sets 
and for the direct and inverse methods of determining the 
values of the exponents. The node position of the 2s orbital 
for the 2nd-row elements is characteristic for each given 
atom. Based on the WKB approximation, we proposed 
theoretical estimates of the node position from the first 
principles and found simple formulas, respectively, brack-
eting and expressing the position of the node as a function 
of the nuclear charge. It was shown that the knowledge 
of the node position allows one to express the exponents 
of all s-orbitals as analytic functions of nuclear charge, 
justifying the empirical fits. Together with the fact that 
all matrix elements of the Hamiltonian may be expressed 
through the orbital exponents of the proposed basis sets 
in the easiest possible way, it makes possible a construc-
tion of analytic quantum chemical models, depending only 
on nuclear charges of atoms and by this enables analytic 
studies of the former.

Acknowledgements This work has been supported by the Volkswagen-
stiftung (Grant No 151110). The authors acknowledge valuable discus-
sion with Dr. Nikolai S. Mosyagin (St. Petersbourg, Russia) and thank 
the Referees for their valuable comments and references to the previous 
important studies, allowing to improve the present work significantly.

References

 1. Helgaker T, Jørgensen P, Olsen J (2014) Molecular electronic-
structure theory. Wiley, Hoboken

 2. Jensen F (2012) WIREs Comput Mol Sci 3:273–295



Theoretical Chemistry Accounts (2019) 138:9 

1 3

Page 11 of 11 9

 3. Davidson E, Feller D (1986) Chem Rev 86:681–696
 4. Deringer VL, Tchougréeff AL, Dronskowski R (2011) J Phys 

Chem A 115:5461–5466
 5. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R (2013) 

J Comput Chem 34:2557–2567
 6. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R (2016) 

J Comput Chem 37:1030–1035
 7. Junquera J, Paz O, Sanchez-Portal D, Artacho E (2001) Phys Rev 

B 64:235111
 8. Slater JC (1930) Phys Rev 16:57–64
 9. Boys SF (1950) Proc R Soc London A Math Phys Sci 200:542–554
 10. Tchougréeff AL, Dronskowski R (2016) Mol Phys 114:1423–1444
 11. Tchougréeff AL (2017) AIP Conf Proc 1906:030004
 12. Tchougréeff AL, Theor Chem Acc (submitted)
 13. Lennard-Jones JE (1937) Proc R Soc A158:280
 14. Coulson CA (1938) Proc R Soc A 164:383
 15. Misurkin IA, Ovchinnikov AA (1977) Russ Chem Rev 

46:967–987
 16. Morse PM, Young LA, Haurwitz ES (1935) Phys Rev 48:948–954
 17. Duncanson WE, Coulson CA (1944) Proc R Soc Edinb 62:37–40
 18. Pujol L, Simon J-C (1968) Theor Chim Acta (Berl) 11:59–74
 19. Gombás P, Szondy T (1970) Solutions of the simplified self-con-

sistent field for all atoms of the periodic system of elements from 
Z=2 to Z=92. Adam Hilger, London

 20. Gombás P, Szondy T (1968) Acta Phys Acad Sci Hung 
25:345–359

 21. Clementi E, Roetti C (1974) At Data Nucl Data Tables 14:177
 22. Bunge CF, Barrientos JA, Bunge AV (1993) At Data Nucl Data 

Tables 53:113–162

 23. Szasz L (1985) Pseudopotential theory of atoms and molecules. 
Wiley, Hoboken

 24. Moffit W (1950) Proc R Soc Lond A 202:534–547
 25. Бирон ЕВ (1915) ЖРФХО, ч. хим.,  47, вып. 4, 964–968; Biron 

EV (1915) J Russ Chem Part 47(4):964–968 (in Russian)  
 26. Pyykkö P (1979) J Chem Res (S) 11:380–381
 27. Roothaan CCJ (1960) Rev Mod Phys 32:179–185
 28. Condon EU, Shortley GH (1935) The theory of atomic spectra. 

Cambridge University Press, London
 29. Тихонов АН, Гончарский АВ, Степанов ВВ, Ягола АГ, (1983) 

Регуляризующие алгоритмы и априорная информация. Наука, 
Москва [in Russian]; Tikhonov AN, Goncharsky AV, Stepanov 
VV, Yagola AG (1995) Numerical methods for the solution of 
Ill-posed problems. Kluwer, Dordrecht (in English)

 30. NIST Ionization Energies Databse. https ://physi cs.nist.gov/PhysR 
efDat a/ASD/ionEn ergy.html. Accessed May 2018

 31. NIST Atomic Spectra Database. https ://physi cs.nist.gov/PhysR 
efDat a/ASD/lines _form.html. Accessed May 2018

 32. Verner DA, Verner EM, Ferland GJ (1996) At Data Nucl Data 
Tables 64:1–180

 33. Clementi E, Raimondi DJ (1963) Chem Phys 38:2686
 34. Kramers HA (1926) Z Phys 39:828–840
 35. Wentzel G (1926) Z Phys 38:518–529
 36. Tchougréeff AL, Ángyán J (2010) Int J Quant Chem 110:454–475

https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
https://physics.nist.gov/PhysRefData/ASD/lines_form.html
https://physics.nist.gov/PhysRefData/ASD/lines_form.html

	Atomic orbitals revisited: generalized hydrogen-like basis sets for 2nd-row elements
	Abstract
	1 Introduction
	2 Specification of basis sets and methods of calculations
	2.1 Direct problem
	2.2 Inverse problem
	2.2.1 Experimental spectra fit
	2.2.2 Fitting against external basis set


	3 Results and discussion
	3.1 Direct problem
	3.1.1 Orbital exponents and shapes of orbitals
	3.1.2 Position of the node of the 2s orbital
	3.1.3 Spectra and ionization potentials as derived from direct problem

	3.2 Inverse problems
	3.2.1 Spectral data fit
	3.2.2 Fit against Bunge orbitals


	4 Conclusions
	Acknowledgements 
	References




