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Abstract

The minimum atomic parameters/Moscow–Aachen–Paris (MAP) basis sets—

reintroduced in the previous paper—are analyzed with respect to spatial features as

orbital shape, possible fits to alternative orbital sets (numerical or quasi-numerical

orbitals, nodeless Slater orbitals), respect of Kato's condition and radial distribution of

energy components. For comparing orbital spaces the Frobenius angle between the

orbital subspaces they span is introduced as numerical tool. It is shown that the elec-

tronic density of the MAP states is depleted around the nucleus with respect to the

other orbital sets. Despite this, the similarity between the respective subspaces in all

cases (except a unique case of the Pd atom) as measured by the cosine of the

Frobenius angle amounts above 0.96 for all atoms. Deviations from the perfect value

of Kato's condition amounts systematically to 0.3 and 0.5 for all elements considered.

Integrating one-electron energy contributions from r = ∞ to a finite radius, MAP and

Bunge orbitals show about the same values, but for the inner region governed by the

polynomial oscillations.
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1 | INTRODUCTION. RECALL OF THE MOSCOW–AACHEN–PARIS ORBITALS

In the previous paper [1], hereafter referred to as I, we extend the analysis of atomic orbitals constructed via a minimal-parameter procedure,

specifying only one single exponent per sub-shell. This procedure—reintroduced in Popov and Tchougréeff [2] for the atoms of the second

period—actualizes the original idea dating back to 1930s [3].

In this setting the orthogonality of the atomic functions is obtained by writing the radial function Rnℓ(r) as a polynomial of order (n � 1) in

r times an exponential function exp(�ξnℓr) and by solving hierarchically the orthonormality conditions for so-constructed functions within a set of

common ℓ. Orbital exponents ξnℓ are chosen to minimize the total energy [4–6] for a given electron configuration, leading to a restricted open-

shell Hartree–Fock procedure.

As we have shown in paper I, such a setting misses about 3% in total energy with respect to numerical Hartree–Fock orbitals [7, 8], or expan-

sions in the large Slater-type basis sets of Bunge et al. [9], which in their turn give the results at μ-Hartree precision with respect to the previous.

Despite this loss in total energy with respect to purely numerical, basis-set-free Hartree–Fock calculations, Moscow–Aachen–Paris (MAP) orbitals

have an overlap with their numerical analogues of more than 90%.

As for physical properties, the periodicity of Mendeleev's table is well reproduced by the MAP orbitals in terms of atom sizes.

A remarkable feature of the MAP orbitals is that the positions of the nodes in the individual orbitals of a given atom and given angular quantum
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number ℓ almost coincide for different allowed values of the principal quantum number n (ℓ ≥ n � 1) with the coincidence being particularly close

for the innermost nodes.

In the present manuscript we investigate further the connections between MAP orbitals and the two other extremes, numerical orbitals on

one side and nodeless Slater orbitals on the other, by looking at orbital shapes, mutual fits of parameters, radial integration and Kato's condition

as test. Conclusions from these and an outlook to potentially interesting applications close this contribution.

Purely technical details are collected in an Appendix, and a compilation of the data can be found in the accompanying Supporting Information.

The underlying MAP orbital exponents are found in the supporting information of paper I [1].

2 | DISCUSSION

All data of this manuscript refer to the electronic ground states of the respective chemical elements, as given by the Madelung–Klechkowski rule

[10, 11]. Known exceptions to this rule like Cr, Cu, Pd, and so forth will be discussed in a forthcoming paper, together with a more detailed look at

excited states in general.

2.1 | Orbital shapes

Obtained orbitals in the minimal-parameter set may be inspected and compared to available (quasi-)numerical Hartree–Fock orbitals [8, 9]. We

observe as general aspect that while the long-range tail is comparable in both orbital sets, the region close to the nucleus manifests significant dif-

ferences. Specifically, despite the correspondence of the positions of the radial nodes of both the Bunge and MAP functions, the amplitudes of

the oscillations of the MAP orbitals coming from the polynomial multiplier are much less pronounced than for Bunge orbitals, especially when

comparing valence orbitals, see Figure 1.

Of course, orthonormality imposes the nodal structure of the orbitals, even if the population inside the outermost node, that is, the integral

of the squared orbital from zero to the position of this node, does not exceed some percent of the total population of the orbital. This led already

Slater to simplify radial functions toward nodeless orbitals [12, 13], and as well for orbitals suited for commonly used pseudopotentials the nodal

structure with respect to the replaced core is entirely ignored [14–17]. In the latter case it had been shown that even if Hartree-Fock valence

energies are well reproduced, the absence of the inner nodal structure induces significant errors when calculating valence correlation energies. If

necessary, one may reduce the number of replaced electrons in order to recover some of the nodal structure (small-core pseudopotentials), or

resort to model potentials [18] which are designed to maintain all orbital nodes for the valence orbitals. Since presently we concentrate on the

features of the Hartree–Fock based MAP states we keep the discussion of these issues for future work.

Plotting the inner population for MAP and Bunge orbitals as shown in Figure 2 reveals that the spatial distribution of electron density is

not the same within the two orbital sets. The difference is relatively small for 2s orbitals, but it becomes quite pronounced for higher n. Sys-

tematic differences can be seen as well for the series of transition elements (Z = 21–30, 39–48), where the 4s and, correspondingly, the 5s

inner population for numerical orbitals—a few percent of the total orbital population—decreases with increasing Z, but is hardly detectable for

MAP orbitals for these elements.

As we reported in paper I, total energy and atomic radius are affected only weakly by these differences of density distributions, so that over-

laps between MAP and Bunge orbitals remain within 95%.

Comparing orbitals in two basis sets one by one does not provide an integral picture. Fundamentally, we should compare functional subspaces

spanned by the two basis sets. This can be easily done with help of the Frobenius inner product of the projection operators on the respective sub-

spaces (for details see Appendix Equation A1) as a numerical tool. Physically, the cosine of the angle between the subspaces as defined by

Equation (A2) gives the probability for a particle (electron) abiding in a state belonging to one subspace to occur in a state of another one.

Figure 3 shows that the so-defined probability remains of the order of 95% throughout the whole range of elements of the periodic table

covered here. We observe that Pd represents a striking exception as we optimized the orbital space for a 4d85s2 high-spin state instead of the

physical 4d105s0 ground state.

Looking more into detail for the iodine atom (we will use this atom throughout the article as example) we may compare the subspace overlap

of Bunge's orbitals with orbital sets generated from a few available basis sets [19]. In Table 1 we give total energies and the Frobenius analysis

(cosine of the angle between the subspaces) for the complete subspaces, and broken down for different ℓ. We note that the energy of the MAP

orbitals are somewhere between simple STO-nG or double-zeta basis sets. Richer and more flexible basis sets yield better total energies, even if

Gaussian basis sets are employed. Measured with the Frobenius analysis, MAP orbitals are on average the least coincident with the target (Bunge)

orbitals. Therefore we give in the lower part of Table 1 the overlap matrix elements for each s orbital separately, p and d orbitals following the

same trend. We notice that the 1s orbital is best represented by the MAP orbital, which is not any more true for the 5s orbital. The excellent
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representation of the core orbitals by MAP functions (overlaps of 100%) explains the relatively good total energy, and the increasing differences

of the polynomial regions with increasing n (down to 96% for the 5s orbital) are the reason of or the poorer subspace overlap.

2.2 | Mutual fitting of orbital sets

While numerical Hartree–Fock orbitals can be considered as parameter-free (making abstraction of the radial integration points), we may intro-

duce several different optimization criteria for the parameters defining either MAP or nodeless Slater orbitals.
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F IGURE 1 Illustrating the previous findings at hand of the spatial extension of the ns valence orbitals of C, Al, Ni and Ag. Bunge orbitals are
represented by solid lines, and MAP orbitals by broken lines. Despite significant differences in the vicinity of the nucleus, the overlapÐ∞
0 RBunge rð ÞRMAP rð Þr2dr of the corresponding functions is always larger than 90%
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F IGURE 2 Integration of the radial density from r = 0 up to the outermost node, for Bunge orbitals, and for the corresponding MAP orbitals.
Upper panel shows the 2s to 5s, starting at Z = 3, 11, 19, and 37, respectively. Left lower panel displays the p series, starting, respectively, at
Z = 13, 31 and 49. The 4d orbitals are shown in lower right panel
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F IGURE 3 The cosine of the Frobenius angle equation (A2) between the subspaces given by Bunge and MAP orbitals, broken down for
different ℓ. The matching of the total orbital space is represented by the continuous line, s, p and d orbital spaces are given by the dash-dotted,
dashed and long-dashed lines, respectively. The exception of Pd (Z = 46) is explained in the text
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2.2.1 | Orbital exponent optimization with nodes fixed at the positions of the nodes given by numerical
orbitals

Having observed that the orbital shapes in the core region are significantly different between the MAP and Bunge/numerical orbitals, despite the

relative smallness of the total-energy differences and large overlaps, we may have a closer look to the nodes of the orbitals. As we could see for

the iodine 5s orbital as example (see figure 5 of paper I), the nodes are nearly coinciding, although not identical between MAP and Bunge orbitals.

The numerical orbital has, due to the orthogonality constraints, as many nodes as the corresponding MAP orbital. We may try to fit thus the

MAP expression to this orbital, going through exactly the same nodes. Before doing so, we divide numerically the radial function of numerical

orbitals by the corresponding polynomial factor. As shown in Figure 4, the ideally linear relations (in a logarithmic plot) are well visible for the inner

shells, and as well the shell structure is clearly reproduced.

Fitting a MAP orbital to the corresponding numerical Hartree–Fock or Bunge orbital while keeping the node positions fixed at those of the

target orbital, comes then down to a linear regression with the slope (i.e., the MAP exponent) as only free parameter. The intercept is fixed

through the normalization condition.

Optimizing the overlap of MAP states in this way gives for instance for the iodine 5s orbital an exponent of 3.18631 with overlap of 0.964,

almost identical with one found via the energy optimization in the MAP setting: 3.1897. A more detailed compilation of the results of the

described procedure applied to the whole set of iodine orbitals is given in Table 2.

Taking the so-obtained, slightly non-orthogonal orbitals—we fit the MAP exponents individually to the corresponding Bunge orbitals—as

starting point for our MAP energy optimization procedure, we obtain again the previously generated, energy-minimizing exponents.

2.2.2 | Fit MAP to Bunge by maximizing the Frobenius product between the two orbitals sets

As mentioned in Section 2.1, the numerical measure of the coincidence between the orbital subspaces spanned by different basis sets is given by

the Frobenius angle equation (A2) between them. The cosine of this angle is the probability of finding an electron in a subspace spanned by one

TABLE 1 Frobenius analysis for
different standard basis sets for an iodine
atom, with respect to Bunge orbitals

Total energy
Cos (angle) wrt to Bunge

Basis (Hartree) tot s p d

STO-3G �6850.6762 0.9858 0.9852 0.9886 0.9827

STO-6G �6885.6062 0.9859 0.9847 0.9892 0.9826

3-21G �6887.3052 0.9990 0.9994 0.9988 0.9990

MAP �6893.7730 0.9733 0.9794 0.9705 0.9735

6-311G �6904.0420 0.9608 0.9971 0.9968 0.8995

Jorge DZP �6911.9867 0.9906 0.9994 0.9973 0.9783

6-311G** �6916.7496 0.9995 1.0000 0.9999 0.9987

Jorge QZP �6917.5145 0.9998 1.0000 0.9999 0.9996

Bunge �6917.9809

Overlap matrix elements

Basis 1s 2s 3s 4s 5s

STO-3G 0.9998 0.9979 0.9952 0.9923 0.9754

STO-6G 1.0000 0.9967 0.9930 0.9912 0.9751

3-21G 0.9995 0.9997 0.9997 0.9999 0.9998

MAP 1.0000 0.9985 0.9895 0.9777 0.9589

6-311G 1.0000 1.0000 0.9999 0.9980 0.9933

Jorge DZP 1.0000 0.9999 1.0000 0.9995 0.9984

6-311G** 1.0000 1.0000 1.0000 1.0000 1.0000

Jorge QZP 1.0000 0.9999 1.0000 1.0000 1.0000

Note: The upper part of the table gives the different subspaces (total, s, p and d orbitals). Orbital sets are

ordered wrt to total energy. In the lower part of the table we give the individual overlap-matrix elements

ϕbasis
i ΦBunge

i

��� ED
for the five different s orbitals.
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basis set under the condition that it occurs in the subspace spanned by another one. We may thus maximize this quantity by fitting all exponents

of the mutually orthogonal MAP orbitals to Bunge orbitals, without the exact node-matching.

Traditionally, (see, e.g., References [5, 20–23]) the quality of a fit is controlled by the achieved total energy as based on the variation principle.

This approach is actually not needed. First, it requires the calculation of the energy which may be tedious. Second, in the strict sense, it produces

the measure of the closeness of the specific (lowest energy) state approximations achievable in the subspaces rather than of the subspaces them-

selves. In the atomic context it means that in the energy-variation principle setting the states, say, in the valence subshell of an atom, are treated

differently depending on the amount of electron population of the latter. Thus, the Frobenius angle or its cosine gives a more uniform quantifica-

tion of the similarity of the subspaces to be compared.

Figure 5 gives an account on the difference of the two optimization criteria, and the corresponding exponents can be found in the Supporting

Information. In contrast to energy optimization we face now 1s exponents which are larger than the atomic number Z, especially for the heavier

elements, for example, for iodine we arrive at 53.2598. One explanation may be that Bunge's basis sets contain as well exponents larger than the

atomic number, with non-negligible weight in the 1s orbitals. However, the same results are obtained when maximizing the overlap with respect
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F IGURE 4 For iodine we show the numerical Hartree–Fock orbitals—as obtained by the Froese–Fischer program [8]—divided by the
polynomial fixed by the orbital nodes, in a logarithmic scale. The 1s orbital is a pure exponential function; however the deviations from the ideal
relations are more and more pronounced for increasing n

TABLE 2 MAP exponents for an iodine atom

Orb. MAP exp. var. HF MAP/Slater overlap MAP exp. fitted to Bunge Max. overlap in %

1s 52.686 100. 52.3059 99.9993

2s 25.249 87.8 24.2894 99.9565

3s 14.883 72.1 13.8225 99.5837

4s 8.1798 71.1 7.65756 98.3884

5s 3.1897 86.4 3.18631 96.4233

2p 24.632 100. 23.7707 99.9710

3p 14.276 81.8 13.3155 99.5463

4p 7.5596 77.5 7.05405 98.1482

5p 2.7051 72.0 2.58773 95.9579

3d 12.988 100. 12.1820 99.7152

4d 6.1826 89.8 5.72662 97.5304

Note: The first column gives the previously obtained MAP exponents (see supporting information of paper I for full-precision data), second column gives

the overlap (in per cent) of the MAP function and a corresponding nodeless Slater orbital r(n � 1)e�ξr. Third and fourth column show the data for the

exponents obtained by maximizing the overlap of the same nℓ, respecting norm and positions of the nodes. Total energies are (in Hartree) �6917.981,

�6893.773, �6881.287 for Bunge, variational MAP, and the present fit, respectively. For calculating a total energy from the fitted exponents, orbitals

were re-orthogonalized via the MAP construction. This shifts the node positions slightly, as Bunge nodes and orthogonality define too many constraints to

be satisfied simultaneously within the minimal parameter space.

6 of 14 REINHARDT ET AL.
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to basis-set free numerical orbitals—we cannot impute this apparently unphysical result to numerical artifacts, but to the optimization criterion

which gives less relative weight to the core orbitals when maximizing the overlaps globally.

2.2.3 | Fit of Z* of the Slater model to MAP and Bunge orbitals

The Frobenius scalar product allows to quantify the difference between different orbital sets. Another measure may be to fit a well-defined third

orbital class to either set, for instance Slater's nodeless radial functions, by maximizing the overlap between the orbital sets.

Again, we have just one single parameter per subshell, as all others are fixed.

The overlap of a MAP or Bunge orbital with a primitive Slater orbital may be easily calculated as a function of Z* with the help of, for example,

Mathematica [24], and incorporated in an optimization procedure.

For the iodine atom as example we find the best Z* yielding the maximal overlaps as given in Table 3. The complete sets of orbital exponents

can be found in the Supporting Information.

We see immediately that overlaps between MAP and Bunge states are always better than 0.95, and the obtained Z* are close. However, the

resulting 2s exponent is considerably smaller than the 2p exponent, and the same holds for the 3p exponent. For these two orbitals the relatively

large oscillations of the polynomial render the best-overlap nodeless Slater functions shifted with respect to the main lobes. A larger exponent

would fit the outer region better, but gives a smaller overlap in the inner region. For the higher-n orbitals this is less important as the polynomial

oscillations are weaker, and thus the common decay at larger distances is more significant for the best overlap.

Figure 6 gives a global picture of the results of the two fitting procedures, in terms of analogues of effective screenings Snℓ of the nucleus

ξnℓ ¼
Z�
nℓ

n�
¼Z�Snℓ

n�

The sp degeneracy of Slater's model is lifted, and the screenings always augment with augmenting Z (exceptions being the nodeless 1s, 2p

and 3d shells). The order of magnitude (i.e., atomic radii) is the same for all three orbital sets. Having a closer look to the 3d orbital, we may notice

a qualitatively different evolution of MAP and Bunge orbitals, the MAP orbital being more compact than the corresponding one from Bunge's set.

2.3 | Kato's condition

As commonly known, the exact electron density must have a cusp at the nuclear position, respecting Kato's condition: [25]

1
2

r!ρ r
!� ���� ���

sph:av:

ρ r
!� �

�������
r¼0

¼Z: ð1Þ

0 5 10 15 20 25 30 35 40 45 50 55
Atomic Number Z

0.95

0.96

0.97

0.98

0.99

1.00

C
os

 o
f F

ro
be

ni
us

 a
ng

le

Energy−optimized
Optimized Frobenius product

F IGURE 5 Cosine of the Frobenius angle wrt to Bunge orbitals for the energy-optimized MAP orbitals (solid line) and the reoptimized orbitals
to minimize this angle. The spike for Pd (Z = 46) disappears, as we do not optimize the total energy for a given state, but for a given set of orbitals
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Taking numerical Hartree–Fock orbitals or Bunge's basis sets we see that this condition is fulfilled already at the Hartree–Fock level [7], and

even individually for each atomic s orbital [26]—the only ones with a non-vanishing electron density at the origin.

Despite the sizable absolute deviation of the gradient-to-density ratio from the ideal value of Z it does not show any significant or character-

istic variation with Z, ranging from 0.3 for a helium atom to around 0.5 for the heavier elements. The relative deviation (divided by Z) fades out

with increase of Z. Electron correlation as the missing ingredient in the Hartree–Fock approach can be ruled out being responsible for this devia-

tion as the electron density and orbitals within Bunge's basis sets reproduce the nuclear cusp correctly.

We find that the 1s exponent already governs the value of the gradient at the origin. The other s orbitals change this quantity only very little,

as they add in a similar way to the numerator and the denominator of the expression. For instance for the Sulfur atom (Z = 16) we find as

TABLE 3 Slater's effective nuclear charges Z* and maximized overlaps and corresponding Z* for MAP/Bunge orbitals and Slater orbitals
r n��1ð Þexp Z�

n� r
� �

, for the iodine atom, Z = 53

MAP Bunge

Orb. Slater's screened Z* Max. overlap Z* Max. Overlap Z* SMAP/Bunge

1s 52.69 1.000000 52.6862 0.999993 52.3059 0.999973

2s 48.85 0.932635 38.8031 0.938749 37.3943 0.998507

3s 41.75 0.882507 30.8542 0.895175 28.4649 0.989460

4s 25.25 0.896528 19.6500 0.893065 17.8801 0.977660

5s 7.60 0.947849 8.13347 0.942856 7.97763 0.958939

2p 48.85 1.000000 49.2630 0.999710 47.5415 0.998949

3p 41.75 0.910455 32.2099 0.919719 29.7338 0.990418

4p 25.25 0.914354 18.9800 0.911075 17.2700 0.976573

5p 7.60 0.958761 7.13512 0.959876 6.82707 0.954011

3d 31.85 1.000000 38.9644 0.997152 36.5458 0.993981

4d 13.85 0.953058 17.2792 0.948578 15.8040 0.972777

Note: We give in the last column also the overlap between the MAP and Bunge orbital for sake of completeness.
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F IGURE 6 Scaled screenings of the nucleus (�Snℓ
n� ¼ Z�

nℓ�Z
n� ), for the Slater model (left), Slater functions fitted to MAP orbitals (middle) and to

Bunge orbitals (right), as functions of the atomic number Z. The constant screenings and the sp degeneracy of Slater's model are not reproduced,
but for the nodeless 1s, 2p and 3d orbitals. For MAP and Bunge orbitals we give as well (dashed lines) the screenings scaled with the full quantum
number n instead of Slater's n*. Shells can be identified in the middle and right panel from the starting points of the lines. The spike in the right
panel is Pd (Z = 46)
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individual r!ρ r
!� �

=ρ r
!� ���� ���

r¼0

��� values of 15.6886, 14.1127 and 11.1905 for 1s, 2s, and 3s, respectively, leading as a sum to 15.6052. Using Bunge's

basis sets the corresponding data are 15.9999, 15.9919 and 15.9976 with a sum of 15.9993, very close to the expected result.

The overall results, as cumulative sums in numerator and denominator of the reduced density gradient, are depicted in Figure 7; the smooth

curves allow an estimation of the numerical noise of our multi-parameter optimization procedure.

We see as well that the 4s and the 5s orbitals do not add any change to the cumulative sums. This is due to the very low electron density at

the origin, for instance for the I atom in the MAP setting we have densities of 7499, 757.5, 99.83, 3.100, and 0.001045 (in atomic units) for 1s to

5s, respectively. For orbitals expanded in the Bunge basis set, the figures read 7391, 779.5, 154.7, 31.45 and 3.639, reflecting the same findings

as for the populations inside the polynomial region.

2.4 | Radial integration of one-electron quantities

Kato's condition “measures” the orbitals in the vicinity of the nucleus. For looking at the opposite side, we may integrate energy contributions [7]

from outside toward the nucleus, like kinetic energy or the electron-nucleus attraction. In this way we see, in which region the difference in total

energy between the MAP and the Bunge orbital sets are located. Figure 8 shows these contributions for the orbitals already displayed in Figure 1.

If for the carbon 2s orbital the difference is hardly visible, we see for the Ni 4s and Ag 5s orbital that the kinetic-energy contributions to the total

energy are not systematically underestimated by the MAP orbitals,

Radii for the shown elements (C, Al, Ni, Ag) are 1.94025, 3.34261, 3.20627 and 3.63247 Bohr, respectively, and nodes of Bunge orbitals are

situated at 0.376 a.u. (C, 2s), 0.797 and 0.162 (Al, 3s), at 0.0742 (Ni 2s), 0.304 and 0.0718 (Ni, 3s), 0.936, 0.296 and 0.0716 (Ni, 4s), and, finally, at

1.149, 0.439, 0.162, and 0.0417 a.u. (Ag, 5s). We marked these in the plot.

In the region outside the atomic radius the two orbital sets are close, and significant deviations for the radial integration occur only within the

nodal region, too close to the nucleus with respect to the chemically important valence region. We can thus expect that atoms described with

MAP orbitals will produce chemically relevant data, without the need for long basis set expansions. The density missing in the core region is dis-

tributed in a wide range in the outer orbital lobes, rendering them only insignificantly different to numerical or high-precision orbitals, be it in

Gaussian or Slater expansions.

2.5 | Relation to the general basis-construction problems

Depending on the application, a typical ab initio Gaussian basis set employs 10–200 GTO functions per atom, optimized with some criterion but

without whatever individual meaning [26]. Yet at pretty early stage there were attempts to reduce the number of independent parameters in so-

constructed sets by subjecting the exponents of the Gaussians to some parametric form. After the STO-nG series [27], this gave rise to well-

tempered and even-tempered basis sets [20–23], well known in the literature. Remarkably, the functions of these sets have been obtained by
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F IGURE 7 Deviation from Kato's condition (1/2) jrρj/ρ � Z = 0 at the nucleus, evaluated directly from the radial functions of the s orbitals
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minimizing the total energy in the Hartree–Fock approximation by which basis sets eventually spanning the same subspace as the Bunge basis

sets, the latter very close to numerical Hartree–Fock orbitals obtained on radial grids [8]. The parameters used for the construction of even- or

well-tempered exponent sequences, universal [20, 22] or atom-specific [23], do not have any meaning by themselves—they are merely numbers.

The present MAP paradigm provides a completely different approach to the selection of the characteristics of the spatial decay of the atomic

states: for each (sub)shell a single parameter provides a definite physical sense—a great intellectual and technical advantage of the proposed

approach. So far implemented for the orbitals occupied in the ground state as treated in the Hartree–Fock setting, the MAP approach may be

extended to excited (unoccupied in the ground state) atomic orbitals to formation of hierarchical basis sets as prescribed in Blum et al. [28].

Indeed, adding further and further subshells entering with corresponding exponents with assured orthogonality eventually produces the required

hierarchy of approximations.

This still needs to be controlled for convergence properties, and tested for reasonable sources of the additional exponents for the subshells

missing in the ground state. We will address this issue in a future work.
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Although, maybe not well suitable for describing subtle physical effects depending on the details of the function behavior in the vicinity of

the nucleus like magnetic properties and/or electric (hyper)polarizabilities, the very reasonable exponential decay at larger distances from the

nuclei, important for bond formations and chemical reactivity, makes the MAP states a good alternative for studying chemistry. The paradigm

may be extended as well to ionic states, and thus charge-transfer and ionic compounds. Instead of density plots expanded in a large number of

Gaussian basis functions, a few orbital exponents may be sufficient to characterize different chemical situations.

3 | CONCLUSIONS

By the present work, we continue our studies on minimally parameterized atomic states extending them either in terms of rows covered of the

Mendeleev periodic table. We concentrate particularly on the spatial behavior of the MAP states as compared to that of traditional Slater orbitals

and quasi-numerical Bunge orbitals. It turns out that the MAP states, although, showing much weaker oscillation amplitudes at the shorter

electron-nucleus separations, manifest very large (typically more than 0.95) overlaps with the Bunge states on account of the almost coinciding

positions of the radial nodes of the either series of orbitals. At the same time the similarity of the MAP states with the Slater orbitals allows to

qualify the former as minimally orthogonalized Slater orbitals. In this quality the MAP states are perspective for developing new semi-empirical

methods which habitually use the Slater basis sets which due to lack of the radial nodes cannot assure correct relative positioning of the states of

the same n but different ℓ on the energy scale. These and other issues and perspectives will be addressed in future work.

Additionally, we propose a numerical tool for comparing the relative quality of the basis sets through the Frobenius inner product of the oper-

ator (matrices) projecting to the subspaces spanned by the basis sets to be compared.
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APPENDIX A: Technical details

The Frobenius inner product

Given a basis of the Hilbert space of L2 integrable functions we may define the projectors on the subspaces given by two (finite) orthonormal sets

of atomic orbitals, as M̂¼Pm
μ¼1 μihμj j and B̂¼Pb

β¼1 βihβj j, respectively. The trace of the product of the two matrices tr(M†B) defines a scalar prod-

uct (inner Frobenius product) in the space of matrices for which the usual matrix multiplication is possible, making the latter an Euclidean vector

space. It has all properties of a scalar product—bilinearity and positive definiteness for M = C, but for M being the zero matrix. Applying it to the

square (projector) matrices Mð Þλκ ¼hλ j M̂ j κÞ and B yields:

tr M†B
� �¼X

κλ

X
μ

X
β

κjμh ihμ λj i λjβh ihβ κj i

¼
X
μ

X
β

β
X
κ

κj ihκ j|fflfflfflfflffl{zfflfflfflfflffl}
¼1̂

μ

* +
μ
X
λ

λj ihλ j
|fflfflfflfflffl{zfflfflfflfflffl}

¼1̂

β

* +

¼
X
μ

X
β

βjμh ij j2,

ðA1Þ

where jλi and jκi run over a complete orthonormal basis in L2. That matrix elements are squared in the above expression does not destroy the

bilinearity of the scalar product, as the underlying space is not the orbital space, but the space of the matrices acting in the Hilbert space.

A norm is derived as usual as the square root of the Frobenius inner product of a matrix with itself: Cj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr C†C
� �q

and is known as the

Frobenius matrix norm. The angle between two orbital subspaces is defined via its cosine as:

cosφF ¼
tr M†B
� �
Mj j Bj j ¼

Pm
μ¼1

Pb
β¼1

βjμh ij j2ffiffiffiffi
m

p ffiffiffi
b

p : ðA2Þ

As the involved orbital sets (MAP and Bunge in the present case) are orthonormal, the inner product of either projector with itself is just the

dimensionality of the subspaces m or b (number of elements in the respective orbital set, taking into account the multiplicity of 2ℓ + 1 for a sub-

shell with the azimuthal quantum number ℓ) and the Frobenius norm is the square root of it. The expression Equation (A2) is always non-negative,

and falls between 0 and 1. It can be connected to the notion of a probability.

Integration of energy contributions

For integrating one-electron contributions to the total energy it is sufficient to look at the radial functions. For the kinetic energy the radial part

of the Laplace operator reads

12 of 14 REINHARDT ET AL.
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d2

dr2
þ2

r
d
dr

�ℓ ℓþ1ð Þ
r2

which yields for a pair of primitive, unnormalized Slater functions for a given ℓ

r m�1ð Þe�βrΔrr
n�1ð Þe�αr ¼ r m�1ð Þe�βr d2

dr2
þ2

r
d
dr

�ℓ ℓþ1ð Þ
r2

 !
r n�1ð Þe�αr

¼ e� αþβð Þrr mþn�2ð Þ n n�1ð Þ�ℓ ℓþ1ð Þ
r2

þα2�2
r
nα

	 
 ðA3Þ

For obtaining the kinetic energy density we have to multiply this with �1/2. We may notice that for instance for ℓ = n � 1 the density of the

kinetic energy becomes negative for r > (2n)/α.

Integrating a product of unnormalized Slater functions from 0 to R gives

ðR
0
r m�1ð Þe�βrr n�1ð Þe�αr r2dr¼

ðR
0
r mþnð Þe� αþβð Þrdr¼

¼ 1
αþβ

	 
mþnþ1

mþnð Þ!�Γ mþnþ1,R αþβð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!0for R!∞

0
B@

1
CA ðA4Þ

For the potential we find thus

ðR
0
r mþn�1ð Þe� αþβð Þrdr¼ 1

αþβ

	 
mþn

mþn�1ð Þ!�Γ mþn,R αþβð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!0 for R!∞

0
B@

1
CA ðA5Þ

Γ a,zð Þ¼ Ð∞z t a�1ð Þe�tdt is the incomplete Γ its value to high precision.

We may recall that the normalized Slater function Sαn rð Þ is

Sαn rð Þ¼ 2αð Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 2nþ1ð Þp 2αrð Þn�1 e�αr ðA6Þ

For the radial integration of the kinetic energy the expressions become slightly more complicated:

�1
2

ðR
0
Sβm rð Þ d2

dr2
þ2

r
d
dr

�ℓ ℓþ1ð Þ
r2

 !
Sαn rð Þr2dr

¼ 2m�1βmþ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnΓ 2mð ÞΓ 2nð Þp � �2nn n�1ð Þαnþ3=2 mþn�2ð Þ!

αþβð Þmþn þ
	

ℓ ℓþ1ð Þ
βm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nΓ 2nð Þ

p
Γ mð Þ� Γ m,Rβð Þ|fflfflfflfflffl{zfflfflfflfflffl}

!0 for R!∞

0
B@

1
CA�

2ne�R αþβð Þαnþ1=2Rmþn�1 n n�1ð Þ αþβð Þ� mþn�1ð ÞRα2� �
mþn�1ð Þ αþβð Þ þ

2nαnþ1=2

mþn�1ð Þ αþβð Þmþnþ1�

m�m2
� �

α2þ2mnβþn n�1ð Þ α2þαβ�β2
� �� �

mþn�1ð Þ!� þ

m m�1ð Þα2�2mnαβþn n�1ð Þβ2� �
Γ mþn,R αþβð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

!0 for R!∞

9>=
>;
1
CA

ðA7Þ

For R!∞ we are left with
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�1
2

ð∞
0
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 !
r n�1ð Þe�αr r2dr

¼ 2m�1βmþ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnΓ 2mð ÞΓ 2nð Þp � �2nn n�1ð Þαnþ3=2 mþn�2ð Þ!

αþβð Þmþn þ
	

ℓ ℓþ1ð Þ
βm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nΓ 2nð Þ

p
Γ mð Þþ 2nαnþ1=2

αþβð Þmþnþ1�

m�m2
� �

α2þ2mnβþn n�1ð Þ α2þαβ�β2
� �� �

mþn�2ð Þ!�
ðA8Þ

¼2m�1 ffiffiffi
β

p
m�1ð Þ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m 2m�1ð Þ!p ℓ ℓþ1ð Þ� 2mþn�1αnþ1=2βmþ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnΓ 2mð ÞΓ 2nð Þp

αþβð Þmþnþ1 mþn�2ð Þ!�

m�m2
� �

α2þ2mnβþn n�1ð Þ α2þαβ�β2
� ��n n�1ð Þα αþβð Þ� � ðA9Þ

¼2m�1 ffiffiffi
β

p
m�1ð Þ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m 2m�1ð Þ!p ℓ ℓþ1ð Þ�

2mþn�1αnþ1=2βmþ1=2 m m�1ð Þα2�2mnβþn n�1ð Þβ2� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnΓ 2mð ÞΓ 2nð Þp

αþβð Þmþnþ1 mþn�2ð Þ!
ðA10Þ

Mathematica gives for the latter the same two terms.
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