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Abstract

Basis sets featuring single-exponent radial functions for each of the nℓ subshells and

orthogonality of the radial parts for different values of n within the same ℓ have been

generated for elements 1–54 of the periodic table, by minimizing the total energy for

different spectroscopic states. The derived basis sets can be fairly dubbed as MAP

(minimal atomic parameter/Moscow–Aachen–Paris) basis sets. We show that funda-

mental properties (total energy, radial expectation values, node positions, etc.) of the

generated MAP orbital sets are astonishingly close to those obtained with much

larger basis sets known in the literature, without numerical inconsistencies. The

obtained exponents follow simple relations with respect to the nuclear charge Z.
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1 | INTRODUCTION. WHY A NEW SET OF SLATER-LIKE FUNCTIONS TO DESCRIBE ATOMS?

Quantum chemical modeling starts from finite sets of basis functions so that quality and efficiency of electronic-structure calculations depend on

the properties of the latter. This is emphasized in almost every handbook of quantum chemistry (see, e.g., Helgaker et al. [1]) and manifests itself

in a wide variety of basis sets used for different objects and their properties [2–4]. Currently, the dominating motivation of quantum-chemical

modeling is the accurate numerical reproduction of different properties by using heavy computations. This approach answers questions like

“What numerical value has a quantity of interest?” However, a purely numerical approach cannot provide any explanation. A rarely recognized

deficiency of this approach is that the experimental data to be numerically reproduced are not available with sufficient accuracy or even defini-

tion [5]. An alternative to this numerical approach—which almost disappeared from the literature—aims at a conceptual explanation of experimen-

tal trends by using semi-quantitative models. Although this second way sacrifices the numerical accuracy to some extent, these approaches are to

be considered as complementary to the former. They, however, need as well basis sets as a starting point, although the requirements differ, as for-

mulated for instance in Nagy and Jensen [6]. In fact, only the following seems to be mandatory for the qualitative or at best semi-quantitative

approach: “Each basis function should reflect the nature of the problem, such that a good representation of the orbitals can be achieved by a lim-

ited (small) number of functions.” [6] If this requirement is satisfied in a consistent way, that is, by a physically substantiated set of parameters

defining a small number of functions, then one can hope to meet another desideratum underlined in Nagy and Jensen [6]: providing basis sets for

a good fraction of the periodic table depending on the only true parameter—the atomic number, that is, the nuclear charge Z [7, 8], and this

through a regular and sensible dependence of the parameters and basis orbitals. We would like to achieve in the present contribution to consider

atomic basis sets as semi-observable entities [9].

The paper is organized as follows. In Section 2 we provide the theoretical scheme of constructing minimally parameterized sets of atomic

orbitals with one single exponent for each nℓ subshell while keeping the correct nodal structure. Next, in Section 3, we describe the results of

solving the energy-optimization problem for atoms up to Z = 54 (Xe) in a restricted-open-shell Hartree–Fock setting, and discuss the obtained

results, in order to draw conclusions (Section 4). A compilation of the data can be found in the accompanying Supporting Information, and all

purely technical details are collected in the Appendix.
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2 | THE CONSTRUCTION PROCEDURE

Minimally parameterized basis sets of the form

φnℓm r
!� �

¼NnℓPnℓ 2ξnℓrð Þe�ξnℓr �Yℓm θ,ϕð Þ ð1Þ

are defined so that the correct nodal structure of the orbitals (orthogonality between different functions of same ℓ) is maintained by the radial

polynomial Pnℓ(2ξnℓ r)—the form originally used by Fock and coworkers [10] for the Be atom and for closed 2s22p6 shell ions (like Na+) and then

independently rediscovered and employed for the entire 2nd period [11]—leaving the exponents ξnℓ to be the only free parameters of the basis,

as many as subshells. Writing the normalized radial functions as:

R1s rð Þ¼N1se
�ξ1s r

R2s rð Þ¼N2s 1þa2s 2ξ2srð Þð Þe�ξ2sr

R3s rð Þ¼N3s 1þa3s 2ξ3srð Þþb3s 2ξ3srð Þ2
� �

e�ξ3s r

R4s rð Þ¼N4s 1þa4s 2ξ4srð Þþb4s 2ξ4srð Þ2þ
�

þ c4s 2ξ4srð Þ3
�
e�ξ4s r…

ð2Þ

(and similarly for higher values of the angular momentum) and evaluating the general overlap integral

ð∞
0
rne�ξ1re�ξ2rr2dr¼ nþ2ð Þ!

ξ1þξ2ð Þnþ3
ð3Þ

we arrive at an iterative scheme as a 2s orbital should be orthogonal to 1s, 3s orthogonal to both 2s and 1s and so forth, leading together with the

normalization to n � ℓ conditions for the n � ℓ coefficients of the polynomial Pnℓ(2ξnℓr). So constructed MAP functions are linear combinations of

Slater monomials of the form:

rnexp �ξrð Þ ð4Þ

with the coefficients depending parametrically on the ensemble of ξ's of the functions of lower n. For instance for the 4s orbital we obtain three

equations for the three coefficients a4s, b4s and c4s, in a systematic and generalizable manner. The corresponding equations can be found in

Supporting Information. We can thus determine the orbitals from the exponents ξnℓ without ambiguity, and optimize the total energy with respect

to them. Technically, the total energy for an (open-shell) atom is written, using a non-relativistic Hamiltonian for the atomic system with one or

several open shells [12–14]. As no orbital expansion coefficients have to be determined by minimization (they come immediately from the

orthonormality condition), one single evaluation of EΨ ¼ Ψ Ĥ Ψj i
���D

is needed for each set of exponents. The determination of the exponents

through the minimization of the total energy is then left to a simplex procedure [15] since the gradients used originally [11] become too cumber-

some for the elements beyond the 2nd period. Note that the present procedure is indeed a Hartree–Fock scheme, optimizing the total energy

with respect to the parameters of a single-determinant wavefunction, however without the construction and diagonalization of a Fock matrix of

the commonly employed Roothaan–Hall procedure.

3 | RESULTS AND DISCUSSION

3.1 | Energy minimization and orbital exponents

For the elements Z = 1–54 (H–Xe) we optimized the exponents for atomic ground states as given by the Aufbau principle, without paying atten-

tion to exceptions like Cr, Cu, and most of the 4d transition elements. For the same elements we have from the literature the highly optimized

multi-exponent Bunge basis sets [16], which, in terms of total energy, are very close to numerical Hartree–Fock energies [17]. Our basis sets yield

total energies slightly higher than the Hartree–Fock limit, about 0.3%–0.7%, which is an amazingly small difference, given the number of free

parameters in our calculations. Set aside the proposition of Fock et al. [10], closest to our approach and covering a large part of the periodic table,

are the single-zeta basis sets of Clementi and Raimondi [18], with the same number of exponents as ours, but constructed as optimized linear

combinations of nodeless Slater functions. The number of free parameters is thus about twice as large as ours (exponents and expansion
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coefficients with orthonormality constraints), and the difference to total energies obtained with Bunge's basis sets about a factor two reduced

with respect to ours (see Figure 1).

Overlap integrals between core orbitals in the Bunge sets and respective MAP orbitals are found to be larger than 0.99 (>0.999 for the 1s

shell), and still larger than 0.90 for valence orbitals (for more details see below). One exception is the Pd atom for which the Bunge basis set [16]

had been determined using the physical 4d105s0 ground state without the need to describe a 5s orbital.

Remarkably, in most cases the exponents of valence s-, p- and d-orbitals, determined from the energy minimization procedure, follow, as func-

tions of the atomic number, roughly linear trends as shown in Figure 2, corroborating the semi-empirical argument given in the Introduction.

A closer look reveals that despite almost perfect linear trends particularly for smaller n the deviations from the trends of Figure 2 are not sta-

tistical, but systematic. The dependency of orbital exponents with given nℓ on the nuclear charge is piecewise linear, clearly visible for instance

for the 4s exponents in the three groups 19–20 (K and Ca, 4s as valence), 21–30 (Sc–Zn, filling of the 3d inner shell) and 31–54 (4s being outside
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F IGURE 1 Total energies (left scale) and difference to Bunge's large basis sets in green and Clementi and Raimondi's [18] single-ζ basis sets in
light blue (right scale)
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of completely filled shells). In Table 1 we fit the different regions identified for all orbitals to the linear expression ξ(Z) = a Z + b. As examples the

corresponding linear trends are shown in Figure 3 for 4s and 5s-exponents.

3.2 | Linear trends for the exponents and comparison with Slater rules

The linear trends for the exponents obtained in Section 3.1 can be interpreted in terms of Slater rules [19]. According to the latter, the orbital

exponents in the monomials Equation (4) pertaining to the nℓ-th subshell are to be set according to:

ξ Sð Þ
nℓ ¼ Z�Snℓ Zð Þð Þ

n�
, ð5Þ

where Snℓ(Z) is a screening of the nuclear charge Z characteristic for the given subshell; n* is some effective principal quantum number. According

to the well-known Slater [19] rules, Snℓ(Z) has two contributions. One is constant induced by the electrons from the subshells inner relative to

the nℓ-th one. It is roughly equal to the number of electrons in the inner subshells, but this amount is slightly reduced due to the respective

reduction of the screening produced by the subshell immediately underlying one at hand, whereas the electrons of even lower subshells

each reduce the nuclear charge felt by an electron in the given shell by unity. Another contribution comes from electrons of the same (sub)shell.

TABLE 1 Piecewise linear fits ξ(Z) = a Z + b for s, p, and d MAP exponents together with R2 values

Orbital Character Z-range a b R2 nMAP* nSlater* σMAP S refð Þ
MAP S refð Þ

Slater

1s Core 3–54 0.9999 �0.28 1.0000 1.000 1 [He]

2s Valence 3–4 0.3928 �0.34 — 1.989 2 0.218 1.3481 1.7 [He]

2s “Valence” 5–10 0.3990 �0.41 .9999 0.206 1.8555 [He]

2s Core 11–54 0.5026 �1.36 .9999 2.7185 4.15 [Ne]

2p Valence 5–10 0.3319 �0.45 .9993 1.982 0.341 2.6057 1.7 [He]

2p Core 11–54 0.5042 �2.05 .9999 4.0731 4.15 [Ne]

3s Valence 11–12 0.3479 �2.89 — 3.012 3 �0.048 8.1782 8.8 [Ne]

3s “Valence” 13–18 0.3137 �2.39 .9995 0.054 7.9385 [Ne]

3s Core 19–54 0.3319 �2.82 .9987 8.5170 11.25 [Ar]

3p Valence 13–18 0.2878 �2.51 .9986 3.015 0.132 9.3091 8.8 [Ne]

3p Core 19–54 0.3316 �3.44 .9981 10.3791 11.25 [Ar]

3d Valence 21–30 0.2558 �3.09 .9902 2.739 0.299 14.7677 18 [Ar]

3d Core 31–54 0.3650 �6.35 .9999 17.3947 21.15 [Ar]3d10

4s Valence 19–20 0.3135 �5.01 — 3.841 3.7 �0.204 15.3673 16.8 [Ar]

4s Transition 21–30 0.0294 +0.72 .9963 0.886 15.8198 17.15 [Ar]

4s “Valence” 31–36 0.2993 �7.19 .9960 �0.150 22.9818 25.3 [Ar]3d10

4s Core 37–54 0.2602 �5.65 .9982 21.7150 27.75 [Kr]

4p Valence 31–36 0.2718 �6.85 .9947 3.870 �0.052 24.9061 25.3 [Ar]3d10

4p Core 37–54 0.2583 �6.18 .9978 23.9585 27.75 [Kr]

4d Valence 39–48 0.2672 �8.24 .9897 3.076 0.177 32.3038 30 [Kr]

4d Core 0.3250 �11.04 .9994 33.9833 39.15 [Kr]4d10

5s Valence 37–38 0.3206 �10.84 — 4 34.8 [Kr]

5s Transition 39–48 0.0206 +0.67 .9989 35.15 [Kr]

5s “Valence” 49–54 0.2687 �11.05 .9972 43.3 [Kr]4d10

5p Valence 49–54 0.2581 �10.97 .9952 43.3 [Kr]4d10

Note: For the ns orbitals the character in quotes means that the same orbital is still a valence orbital in the corresponding transition-element series and

beyond in the respective p-blocks. The interpretation of the fitting parameters in terms of effective principal quantum numbers n* and screening

increments σ is given in respective columns of the table. For more explanation see the text. Similarly, the constant core contributions to screening S(ref) as

derived from the slopes and intercepts of the linear fits (b) and from the Slater rules are given. The last column comprises the configurations of the cores

used to calculate the constant contributions to the screening.
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Slater's recipe is that it is remarkably smaller than unity by a constant amount σS = 0.35 for all subshells. For the ranges of Z corresponding to the

filling of an nℓ subshell, which then qualifies as a valence (incomplete) subshell, each step in Z yields an increase of the number of electrons by

one. The screening constant Snℓ(Z) is then augmented by σ until it reaches a maximum screening at the value of Z when the subshell turns filled.

When this happens, further steps in Z add electrons outer to it with no augment of its screening. This all results in piecewise linear relations of

the exponents ξ and the atomic number Z, which can be used for comparison. Specifically, the slopes of the linear relations of ξ versus Z in the

valence ranges of Z's are equal to 1�σð Þ
n� whereas in the core ranges they are simply 1

n�.

The results on the MAP exponents assembled in Table 1 fairly fit into the general picture outlined by the Slater rules. Indeed, the slopes

(the a constants) for the “core” (filled) and “valence” subshells are fairly different. This allows us to estimate the quantities nMAP* and σMAP

according to the above expressions. The obtained values are assembled in the respective columns of Table 1. Remarkably, the values nMAP*

derived from the linear fits of the MAP exponents (actually, in the “core” ranges of the nuclear charges) deviate very little from the nS* values

prescribed by the Slater rules. The slopes in the valence ranges allow to determine the contributions of electrons in the partially filled

subshells to the screening. They are in a somewhat worse agreement with the Slater rules. The latter are best of all satisfied for n = 2, where

σMAP almost coincides with the Slater value of 0.35 (which exactly shows up for 2p valence orbitals). For the MAP orbitals with n = 3 the

screening increment σMAP is remarkably smaller than the Slater prescription with the largest deviation observed for the 3s subshell. For the

subshells n = 4 the situation undergoes some qualitative dissimilarity with the prescriptions of the Slater rules. On one hand, the increment

of the screening σMAP induced by an electron in the partially filled 3d-shell of a transition element on the 4s electrons is fairly close to that

prescribed by Slater (0.85). On the other hand, the qualitative feature of a weaker screening by electrons of the same shell than by those in

the inner shells is reversed. This manifests in the negative values of the σMAP parameters for 4s and 4p. The absolute values of these con-

stants are not that large that is the slopes in “core” and “valence” ranges almost coincide for 4s orbitals.

Similarly to using slopes, we used the intercepts b of the linear fits of the exponents and the boundary Z-values Znℓ of the respective ranges

to estimate the constant screening contributions S refð Þ
MAP ¼ Snℓ Znℓð Þ which are, respectively, given by expressions σMAPZnℓ� nMAP*b and �nMAP*b for

the valence and core ranges and assembled in the respective columns of Table 1. We see that in all cases the constant screening estimated from

the fits of the MAP exponents follow the trends similar to those prescribed by the Slater rules and have close numerical values. A deeper analysis

of the trends described by the quantities nMAP*, σMAP and S refð Þ
MAP ultimately reduces to that of the electron–electron interactions as described in

the MAP basis. It will be performed elsewhere. Notice, however, that the determination of these quantities was not currently possible for the

orbitals with n = 5 since for these latter no information about the behavior of the corresponding exponents in the core regime is available.

3.3 | Atomic radii

As we mentioned in Section 1, the proposed MAP setting [11] for the atomic orbital basis in its primitive form dating back to 1930s [10] has the

advantage that its parameters—orbital exponents—have a direct physical significance. Thus, one can hope to relate them more or less directly to
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F IGURE 3 Piecewise linear trends for 4s (left) and 5s (right) orbital exponents. Yttrium (Z = 39) is an outlier, for so far unknown reason.
Parameters of all linear fits are assembled in Table 1
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some observable characteristics of atoms and eventually those of molecules and crystals/materials. For instance atomic radii may be extracted.

Experimentally, these are generally derived by fitting some data on interatomic separations observed in various contexts.

TheMAP exponents provide already the size of an atom due to the asymptotically exponential decay of the electron density [20]. A simple measure for

an atomic radius is the average radial position hri of the most diffuse orbital. This quantity can be evaluated in any basis set, and we can compare directly

orbitals of theHartree–Fock limit to theMAPorbitals characterized by one single exponent. Figure 4 gives these data for all elements up to Xenon.

The coincidence is again quite striking, atomic radii obtained with the two orbital sets are nearly superposable, but for the 3d and 4d transi-

tion elements.

3.4 | Nodes of the radial MAP functions

Further investigation of the orbitals coming from the MAP setting, Equation (1), led us to an observation depicted in Figure 5 at the hand of the

s orbitals of an Iodine atom. More generally, see Figure 6, it can be seen that for a given atom and given value of the azimuthal quantum number

ℓ the positions of the nodes of the radial functions Rnℓ(r)—the roots of the polynomials Pnℓ(2ξnℓ r)—almost coincide for smaller values of n and for

all nodes k < n � ℓ � 1, counted from the origin, r = 0.

This behavior had already been conjectured in the literature [21] in a slightly different context, and, more recently, in a numerical study [22]

of the outer spinors in a relativistic setting. It also comes up in the studies on ab initio Gaussian atomic basis sets [2, 6, 23] and may be a general

property of all basis-set-expanded atomic orbitals representing, more or less realistic, the atomic one-electron states.

Additionally, we see that the positions of the nodes with the same number, as counted from the nucleus as functions of Z, follow fairly

smooth curves, at least for 2s to 4s. They appear in groups, almost coinciding for the respective nodes, starting at the Z values at which further

nodes for same ℓ and different n appear.

We observe an evident cusp for the third root of the 4s polynomial between Z = 30 and Z = 31, at the end of the first transition series. The

4s-exponent is almost constant in this range, but orthogonality has to be achieved with evolving 1s, 2s, and 3s exponents. Beyond Z = 31 the 4s

exponent varies as well, which adds a different component to the orthogonality constraint, without successive fillings of inner shells. The same is

observed for the 5s at Z = 39 (Y) and Z = 48 (Cd) for the filling of the 4d shell.

These results may be eventually understood by looking more in detail at the polynomials Pnℓ(2ξnℓ r) which maintain the orthogonality

between different functions of the same ℓ. Indeed, inspecting Table 1 closely, we see that at least for the core shells the slopes a of the linear

relations ξn,ℓ(Z) ≈ aZ + b are fairly close to inverse integers 1/nMAP*. The higher Z, the smaller the effect of b, and the ratios ξn,ℓ Zð Þ=ξn0 ,ℓ Zð Þ are

close to the ratios of the corresponding integers, that is, the exponents themselves can be represented as ξn,ℓ ¼Z�
ℓ=n through some effective Z�

ℓ .

It is, however, known from our previous work [11] that for the exponents inversely proportional to integers the recurrent relations between the

coefficients anℓ, bnℓ, cnℓ, … Equation (2) of the polynomials Pnℓ Equation (1) transform to those of the Laguerre polynomials, that is, the MAP poly-

nomials approach the Laguerre ones in the limit of large Z. As a consequence, the nodes of the MAP polynomials flow to the corresponding nodes

of the (associated) Laguerre polynomials. For small values of the argument the Laguerre polynomials can be (asymptotically) approximated through

Bessel functions of the first kind [24, 25], which we summarize in
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Pnℓ 2ξnℓrð Þ !|{z}
Z!∞

L2ℓþ1
n�ℓ�1

2Z�
ℓr
n

� �
!|{z}

small r

J2ℓþ1 2
ffiffiffiffiffiffiffiffiffiffi
2Z�

ℓr
p� 	

2Z�
ℓr

� 	2ℓþ1
2

: ð6Þ

From this we can immediately read an estimate for the positions of the roots of the MAP polynomials:
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F IGURE 5 Plot of the different radial functions of s symmetry for a Iodine atom (Z = 53). We clearly see the close coincidence of the first and
the second orbital node. Black stars correspond to the estimates described by Equation (7), see Section 3.4
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rnℓ kð Þ≈ j22ℓþ1,k

8Z�
ℓ

, ð7Þ

where j2ℓ+1,k is k-th root of the Bessel function J2ℓ+1 of the first kind, independent of n and inversely proportional to the (effective) nuclear

charge, corroborating the graphs of Figure 6.

The above estimate basically repeats the old observation based on the WKB treatment of the hydrogen atom (see Condon and Shortley [26]).

For an iodine atom (Z = 53) we have the s exponents ξ1s to ξ5s as 52.6862, 25.2486, 14.8828, 8.1798, and 3.1897, respectively, fairly resembling

the hydrogenic Z/n series 53, 26.5, 17.666, 13.25, 10.6, ultimately yielding the Laguerre polynomials. On the other hand, minimizing the quadratic

deviation of the MAP exponents from Z�
ℓ=n for a common Z�

ℓ leads to a value of Z�
ℓ ¼49:845.

The roots of the Bessel functions are tabulated and the expected positions of the nodes derived from them are: 0.036818, 0.123428,

0.259552, and 0.445178 Bohr from the origin, respectively. We find 0.0431757, 0.168321 0.429621, 0.989825 Bohr as nodes of the 5s orbital

which is fairly close for the first node, but more and more off for the subsequent ones. The expected positions are reported in Figure 5.

Of course, the reason for this result is that for the inner shells the screening is fairly correct, and as well the approximation of the Laguerre

polynomial via a Bessel function. For the outer nodes, screening via the chosen Z�
ℓ becomes quite wrong and the approximation through the

Bessel function less reliable.

4 | CONCLUSIONS

Minimally parameterized exponential basis sets of the form Equation (1) originating yet from 1930s [10] are defined so that the correct nodal

structure (the orthonormality) of the orbitals is maintained through a polynomial depending only on the exponential parameters. Within this set-

ting each (sub)shell can be described by only one single parameter—its orbital exponent. Assuming this we recently explored [11] atoms of the

second row of the periodic table, and extended the approach up to (Z = 54), that is, including the fifth period.

The (sub)shell-specific orbital exponents ξ nℓð Þ
MAP are derived through optimizing the total energy written in the Hartree–Fock approximation.

Overlaps of the obtained orbitals with the corresponding ones from purely numerical approaches or much longer expansions [16] are quite large

(>90%) and may serve as basis for atomic projection and subsequent analysis of the results of PAW/DFT calculations [27]. The details of the spa-

tial structure of atomic states, like position of the nodes close to the nucleus or the asymptotic behavior for large r are fairly well reproduced.

Despite the restricted number of free parameters the proposed basis sets result in good total energies, and exponents follow simple piece-

wise linear relations as functions of the nuclear charge Z. The switches between different linear trends occur either at the end of rows of the peri-

odic system or when within a row a new (sub)shell starts being filled. Our minimally parameterized basis sets are not intended to replace the

modern ones designed for molecular applications with numerical precision. They, however, may serve as a set of physical parameters for more

qualitative or semi-quantitative studies aimed at establishing and explaining trends in the chemical behavior.

5 | IMPLEMENTATION

From a given set of exponents, the linear equations to obtain the coefficients of the polynomials are solved, and a corresponding input for

Clementi's atomic Hartree–Fock program [28] is produced. The procedure is easily embedded into a simplex algorithm, as described in standard

textbooks of numerical optimization problems [15]. Alternatively to Clementi's program, a local implementation in Moscow (I. Popov) was used

[11], and another specific implementation in Paris of the equations presented in Roothaan and Bagus [13], the latter coupled to the CADNA

numerical verification package [29], for assuring numerical accuracy of the results during the simple optimization procedure, leaving only numeri-

cally significant digits in the results. Either of the programs [13, 28] runs smoothly for the atoms up to Z = 54 (Xe, 5s25p6) giving (exactly) the

same result as the gradient optimization procedure [11] when it goes about the second period thus confirming the mutual consistency of either

protocol.
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