
Physics Letters A 366 (2007) 480–486

www.elsevier.com/locate/pla

Electromechanical nanothermometer

Elena Bichoutskaia a, Andrey M. Popov b, Yurii E. Lozovik a,∗, Gennadii S. Ivanchenko c,
Nikolai G. Lebedev c

a University Chemical Laboratory, Lensfield road, Cambridge CB2 1EW, UK
b Institute of Spectroscopy, Troitsk, Moscow Region 142190, Russia

c Volgograd State University, University Avenue 100, Volgograd 400062, Russia

Received 2 December 2006; accepted 8 January 2007

Available online 21 February 2007

Communicated by V.M. Agranovich

Abstract

A new concept of an electromechanical nanothermometer based on the interaction and relative motion of the components of a nanosystem is
proposed. The nanothermometer can be used for accurate temperature measurements in spatially localized regions with dimensions of several
hundred nanometers. Temperature measurements are carried out through the measurements of the conductivity of the components assuming that
the total conductivity of the system depends significantly on the temperature. A model implementation of the nanothermometer based on the
(6,6)@(11,11) double-walled carbon nanotube is suggested. The dependence of the interwall interaction energy on the relative displacement of
the walls of the (6,6)@(11,11) nanotube is computed ab initio using density functional theory. The conductivity of the walls is calculated within
the Huckel–Hubbard model.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

With the considerable progress in nanotechnology tech-
niques, a number of feasible designs of nanoelectromechani-
cal systems (NEMS) have recently evolved, in which the ele-
ments of electric circuits represent nanoobjects of progressively
smaller scale reaching the size of a single molecule. The op-
eration of some NEMS is based on the changes in electronic
structure and conductivity of a system due to the change in the
relative position of its components at subnanometer scale [1–3].
A few examples of such NEMS based on carbon nanotubes such
as a variable nanoresistor [4–6], a strain nanosensor [7] and a
nonvolative memory element [8] have already been conceptual-
ized and simulated.
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In this Letter, a new concept of an electromechanical nanoth-
ermometer based on the interaction and relative motion of the
components of a nanosystem is proposed. It rests on the mea-
surements of the conductivity of the components which, under
the certain conditions, depends on their relative positions. The
total conductivity of a system then changes significantly with
the temperature due to the thermal vibrations of the compo-
nents.

In general, the temperature dependence of the total conduc-
tivity G(T ) of a system can be expressed as

(1)G(T ) =
∫ ∞
−∞ G(q,T ) exp(−U(q)/kT )dq∫ ∞

−∞ exp(−U(q)/kT )dq
,

where G(q,T ) is the conductivity of the system at a fixed rel-
ative position of the components which are defined by the co-
ordinates q; U(q) is the potential energy of the system. Eq. (1)
takes into account the contributions from the thermal vibration
of the components. Any nanosystem can be used as an electro-
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mechanical nanothermometer if it complies with the following
requirements:

(1) the ‘local’ conductivity G(q,T ) depends significantly on
the coordinates q (condition A);

(2) G(q,T ) depends weakly on the temperature T at a fixed
position of the constituent components (condition B);

(3) the amplitude of the thermal vibrations of the components
is large enough to provide the main contribution to the tem-
perature dependence of the total conductivity G(T ) (condi-
tion C);

(4) the amplitude of the thermal vibrations of the components
is still small for the relative displacements of the compo-
nents to upset the normal operation of the system (condi-
tion D).

The conditions B and C imply that the contributions to G(T )

from phenomena other than the thermal vibrations of the com-
ponents are insignificant. It is also desirable, although not nec-
essary, that the minimum of the potential energy curve U(q),
near which the thermal vibrations of the components occur, co-
incide with the extremum in the dependence of the conductivity
on the coordinate G(q) (condition E). The condition E ensures
that the contributions to the change in the conductivity from
the vibrations corresponding to different displacements from
the equilibrium position of the system are not cancelled out.
If the condition E is fulfilled, any small displacements lead to
the changes of the same sign (either decrease or increase of
the conductivity). The minimum of U(q) and the extremum of
G(q) coincide if, for example, the equilibrium position corre-
sponds to a high symmetry of the system.

The conditions A–E can be satisfied if the nanothermome-
ter is built using double-walled carbon nanotubes (DWNTs)
with nonchiral commensurate walls. Recent studies show that
the conductivity of DWNTs depends on the relative position of
the walls [9–11]. In the telescopic systems, in which a small-
diameter single-walled carbon nanotube (SWNT) is inserted
a certain distance into a larger diameter SWNT, the overlap
of the walls is always less than the lengths of the constituent
SWNTs. In the shuttle structures, in which a large-diameter
SWNT (a shuttle) is placed outside a small-diameter inner-wall
SWNT, the overlap of the walls is equal to the length of the
shuttle.

For both telescopic and shuttle systems, dependence of the
‘local’ conductivity on the displacement z of the walls, G(z),
is a periodic function with large oscillations [10,11]. This result
ensures that the condition A is fulfilled. For telescopic DWNTs,
the conductivity also depends on the length of the overlap of the
walls [11,12]. First experimental measurements of the tempera-
ture dependence of the resistance of SWNTs have been reported
recently [13]. These measurements show that the resistance of
SWNTs does not change for the temperatures above 80 K. The
weak temperature dependence of the conductivity is due to the
ballistic transport over mesoscale distances [14]. Calculations
presented in this Letter for the conductivity of DWNTs with
the fixed position of the walls show very weak temperature de-
pendence above 50 K. These results yield the fulfillment of
the condition B . The relative position of the walls of DWNT
changes due to the thermal vibration of the walls. Therefore,
the total conductivity of DWNT depends significantly on the
temperature, and, mainly, as a result of the thermal vibration.
The dependence of the interwall interaction energy of DWNTs
on the relative displacement of the walls is calculated ab initio.
For the nanothermometer based on DWNTs, this dependence is
subsequently used to estimate the possibility of fulfillment of
the conditions C and D, as well as the minimum dimensions
of the nanothermometer for which the relative diffusion of the
walls does not hinder its operation. Analysis of the symmetry
of DWNTs shows that the condition E is also satisfied for the
nanothermometer based on DWNTs.

Experimental measurements of the conductivity of individ-
ual carbon nanotubes [15,16], together with the advances in
syntheses of DWNTs [17–20], make our conceptual design re-
alistic within the available nanotechnology. The general con-
cept described above stimulates the search for a wider range of
nanosystems suitable for using as an electromechanical nanoth-
ermometer.

2. Calculation of the interwall interaction energy

The interwall interaction energy of DWNT depends on the
relative position of the walls. This position can be described by
φ, the angle of relative rotation of the walls about the longitudi-
nal axis of DWNT, and z, the relative displacement of the walls
along this axis. The symmetry of the interwall interaction en-
ergy surface, as well as the relative position of the walls corre-
sponding to the extrema of the surface, are uniquely determined
by the symmetry of DWNT [21,22]. For the (n,n)@(m,m)

armchair and (n,0)@(m,0) zigzag DWNTs, the Fourier expan-
sion of the interwall interaction energy is given in [21] as

U(φ, z) =
∞∑

M,K(odd)=1

αM
K cos

(
2π

lc
Kz

)
cos

(
nm

N
Mφ

)

× sin2
(

πnm

2N2

)
+

∞∑
M,K(even)=0

βM
K cos

(
2π

lc
Kz

)

(2)× cos

(
nm

N
Mφ

)
,

where N is the greatest common factor of n and m, and lc is
the length of the unit cell of DWNT. The even terms are al-
ways present in Eq. (2), and the odd terms only occur if both n

N
and m

N
are odd. According to the topological theorem [23], ex-

trema of the interaction energy surface of DWNT correspond to
the positions of the walls for which the second-order symmetry
axes of the inner and outer walls are in line. These axes are per-
pendicular to the principal symmetry axis of the wall and pass
through either the mid-point of the carbon bond or the centre of
hexagons. The points on the surface which correspond to the ex-
trema are called critical points (φc, zc) of the interwall interac-
tion energy surface. For the armchair (n,n)@(m,m) and zigzag
(n,0)@(m,0) DWNTs, the elementary cell of U(φ, z) contains
four types of critical points (φc, zc)—a minimum, a maximum
and two saddle points.
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The amplitude of harmonics in expansion (2) drops rapidly
as parameters M and K increase [22–24]. For DWNTs with
nonchiral commensurate walls, U(φ, z) can be interpolated us-
ing the first two harmonics of the expansion (2)

(3)U(φ, z) = U0 − �Uφ

2
cos

(
2π

δφ

φ

)
− �Uz

2
cos

(
2π

δz

z

)
,

where U0 is the average interwall interaction energy, �Uφ and
�Uz are the energy barriers to rotation and sliding of the walls,
and δφ and δz = lc/2 are the periods of rotation and sliding of
the walls between the equivalent positions. Semiempirical cal-
culations [25] show that expansion (3) holds for U(φ, z) within
the accuracy of 1% of the values of �Uφ and �Uz. Ab initio re-
sults [26] for the (5,5)@(10,10) DWNT suggest that U(φ, z)

can be interpolated using expansion (3) within the accuracy of
5% of the value of the energy barriers.

For DWNTs with incompatible rotational symmetries of
nonchiral commensurate walls, calculations [25] and [27] of
the interwall interaction energy surfaces and calculations [10]
of the conductivity of DWNTs show that the dependence of
both the interwall interaction energy and the conductivity on φ

is negligible. Neglecting the φ dependence in (3), the interwall
interaction energy can be written as

(4)U(z) = U0 − �Uz

2
cos

(
2π

δz

z

)
.

Expressions (2)–(4) are valid for any property of DWNT which
depends on the relative positions of the walls. It is particularly
true for the conductivity G(φ, z), as both functions U(φ, z) and
G(φ, z) have the same periods δφ and δz and the same number
of harmonics. Furthermore, extrema of U(φ, z) and G(φ, z)

coincide, and the dependence of U(φ, z) and G(φ, z) on φ is
negligible in the case of incompatible rotational symmetries of
the walls. Thus, the condition E is satisfied for the nanother-
mometer based on DWNT.

The interwall interaction energy U(φ, z) has been calcu-
lated for the (6,6)@(11,11) DWNT which has incompatible
rotational symmetry of the constituent walls. The density func-
tional AIMPRO supercell code [28] within the local density ap-
proximation has been used. Within AIMPRO, the pseudowave
functions are described by 4 atom-centered Gaussian functions
per atom expanded in spherical harmonics up to l = 1, with
the second smallest exponent expanded to l = 2. The super-
cell consists of 68 carbon atoms. The Brillouin Zone sampling
has been performed using 18 special k-points in the direction
of the nanotube axis. Non-local, norm-conserving pseudopo-
tential [29] and the Perdew–Wang exchange–correlation func-
tional [30] have been used. Minima in the total energy have
been found using a conjugate gradient scheme to the accuracy
of 1 µeV/atom. Positions of all atoms in the isolated (6,6) and
(11,11) SWNTs have been optimized. The interwall interaction
energy has been calculated as the difference between the total
energy of the (6,6)@(11,11) DWNT and the separate (6,6)

and (11,11) SWNTs.
U(φ, z) has been calculated as a function of relative dis-

placement of the walls along the principal axis of the DWNT,
i.e. at a fixed angle φ and five values of z including two crit-
Fig. 1. The interwall interaction energy (in meV per atom of the outer wall) of
the (6,6)@(11,11) DWNT as a function of the displacement of the walls. The
displacement z is measured in units of the period δz of the interwall interaction
energy as a function of the relative sliding of the walls. The calculated values
of the energy are shown by circles. The solid line is the interpolation of the
energy using expansion (4). The minimum of the interwall interaction energy is
positioned at U = 0 and z = 0.

ical points which correspond to the minimum and maximum
of U(φ, z). The minimum of U(φ, z) corresponds to the rela-
tive position of the walls for which the second-order symmetry
axes of the inner and outer walls are in line and pass through
the mid-point of the carbon bond. In order to calculate the bar-
rier to relative sliding of the walls, the dependence U(z) has
been interpolated using Eq. (4) within the accuracy of the cal-
culations. The accuracy of the calculations has been estimated
using the difference between the values of U(z) calculated in
the equivalent positions of the walls as described in [27].

Fig. 1 shows the calculated values of U(z) for the
(6,6)@(11,11) DWNT and the interpolation curve. The barrier
to relative sliding of the walls of the (6,6)@(11,11) DWNT
obtained from the interpolation curve is 0.187 ± 0.10 meV per
atom of the outer wall.

3. Calculation of the conductivity

The conductivity of SWNTs with different diameters has
been measured experimentally as 100 µSm [31]. This value is
of the same order of magnitude as the conductivity quantum,
4e2/h = 154 µSm. This suggests the possibility of presence of
quantum effects in some temperature intervals which may ac-
count for the phase transitions such as metal—semiconductor
transition. To explore this possibility, the conductivity of the
(6,6)@(11,11) DWNT has been calculated using the Huckel–
Hubbard model described in [32]. The model Hamiltonian in-
cludes the energy of an electron travelling between the neigh-
bouring carbon atoms, as well as between the walls of DWNT,
and the energy of Coulomb interaction of electrons located at
the same lattice point

Ĥ = −
∑
j�σ

ta�
(
a+
jσ aj+�σ + a+

j+�σ ajσ

) − μa
∑
jσ

a+
jσ ajσ

+ U
∑

a+
jσ ajσ a+

j−σ aj−σ
j
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−
∑
j�σ

tb�
(
b+
jσ bj+�σ + b+

j+�σ bjσ

)

− μb
∑
jσ

b+
jσ bjσ + U

∑
j

b+
jσ bjσ b+

j−σ bj−σ

(5)−
∑
jζσ

tab
ζ

(
a+
jσ bj+ζσ + b+

j+ζσ ajσ

)
,

where a+, a, b+, b are the operators of creation and annihila-
tion of an electron with the spin σ located at the lattice point
j of the inner and outer wall; ta�, tb�, and tab

ζ are the inte-
grals describing the motion of an electron within the inner and
outer walls and between the walls; U is the Coulomb repulsion
energy of electrons at the lattice point j ; μa and μb are the
chemical potentials of the inner and outer walls. The conduc-
tivity tensor has been calculated using Green’s functions of the
Heisenberg equation for the operators of creation and annihila-
tion according the Kubo formula [34]

(6)Gαβ = iπV

kT
〈〈jα|jβ〉〉,

where V is the volume of DWNT, T is the absolute temperature,
〈〈jα|jβ〉〉 is the retarded Green’s function of the current density,
and α and β are the component indices of the current density
vector ĵ. The vector ĵ is defined as

(7)

ĵ = ie

V

∑
kσ

[(
vaa+

kσ akσ + vbb+
kσ bkσ

) + vab
(
b+
kσ akσ + a+

kσ bkσ

)]
.

va , vb and vab are velocities of an electron in inner a, outer b

and inter ab bands, i.e.

va = 1

h̄

∂εa(k)

∂k
, vb = 1

h̄

∂εb(k)

∂k
,

(8)vab = 1

h̄

∂εab(k)

∂k
,

where εa , εb, and εab are dispersion relations of an electron in
a, b and ab bands.

Calculation of the isotropic conductivity as a function of the
temperature has been described in detail elsewhere [33]. For a
number of DWNTs, a wide plateau in the temperature depen-
dence of the total conductivity G(T ) has been reported in the
interval from 5 to 300 K [33]. However, in [33] the effects as-
sociated with the finite length of the walls of DWNT have been
neglected. In this Letter, G(T ) has been calculated for three
lengths of the movable outer (11,11) wall, namely 30, 100 and
1000 unit cells of the (6,6)@(11,11) DWNT. Fig. 2 shows a
very weak temperature dependence of the conductivity above
50 K for the curves which correspond to the lengths of 30 and
100 unit cells. The curve which corresponds to 1000 unit cells is
indistinguishable from the curve for 100 unit cells. This implies
that the contributions to the total conductivity from phenomena
other than the thermal vibration of the walls are insignificant
(fulfillment of the condition B).
Fig. 2. The conductivity (in Sm/m) as a function of the temperature (in Kelvin
degrees) calculated for two lengths of the movable outer wall: 30 (open circles)
and 100 (filled triangles) lengths of the unit cell of the (6,6)@(11,11) DWNT.

4. Basic design of a nanothermometer

Fig. 3 is a schematic which shows a shuttle nanothermome-
ter with a short movable outer wall (the shuttle) (Fig. 3A)
and a telescopic nanothermometer with a movable inner wall
(Fig. 3B). A shuttle nanothermometer with a movable inner
wall and a telescopic nanothermometer with a movable outer
wall are also possible.

Due to the symmetry of DWNT, the extrema of U(z) and
G(z,T ) coincide. As discussed in Section 2, the U(z) curve
can be interpolated near the bottom of the potential well as

(9)U(z′) = U1 + π�Uz

δ2
z

z′2,

where U1 is the interwall interaction energy of DWNT in the
ground state and z′ is the displacement of the movable wall
from the position which corresponds to the ground state. For
small values of z′, G(z′, T ) can be interpolated as

(10)G(z′) = G1(T )
(
1 + γ z′2),

where G1 is the conductivity of DWNT in the ground state.
Substitution of (9) and (10) into (1) leads to the following

expression for the dependence of the conductivity of the nan-
othermometer on the temperature

(11)G(T ) = G1(T )

(
1 + γ δ2

z kT

π�Uz

)
= G1(T )(1 + HT ).

The condition C for the successful operation of the nanother-
mometer, which states that the thermal vibrations give the main
contribution to the dependence of the conductivity on the tem-
perature is fulfilled if

(12)H�T � �G1(T )

〈G1(T )〉 ,

where �G1(T ) is the difference between the minimum and
maximum values of the conductivity of DWNT in the ground
state in the temperature range that can be measured by the
nanothermometer; 〈G1(T )〉 is the mean conductivity of the nan-
othermometer in this temperature range �T . It can be extracted
from Fig. 2 that in the temperature range �T = 250 K, the ratio
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Fig. 3. Schematic of an electromechanical nanothermometer. A: the telescopic nanothermometer with the movable inner wall, B: the shuttle nanothermometer with
the movable outer wall. The movable wall is indicated as (1), the fixed wall as (2) and the attached electrodes as (3).
in formula (12) is approximately unity, i.e.

(13)
�G1(T )

〈G1(T )〉 ∼ 1.

In order to estimate the possibility of fulfillment of the con-
dition C for the nanothermometer based on the (6,6)@(11,11)

DWNT, the interwall interaction energy U(z) calculated in Sec-
tion 2 has been used together with the results of [10] for the con-
ductivity of this DWNT. The dependence of the conductivity on
the relative displacement of the walls for the telescopic system
(Fig. 3 of [10]) has been interpolated near the minimum using
expression (10), and the following estimates for γ have been
obtained for the (6,6)@(11,11) DWNT: γ = 855 ± 124 Å−2

for the overlap of the walls of 10 unit cells in length and
γ = 21 ± 12 Å−2 for the overlap of 250 unit cells. Accord-
ing to the ab initio calculations of Section 2, the barriers to the
relative sliding of the movable wall are �Uz = 78.4 meV and
�Uz = 1.96 eV for the overlap of the walls of 10 and 250 unit
cells, respectively. If �T = 250 K, the value of H�T acquires
the following values: 117 ± 17 for the overlap of 10 unit cells
and 0.43 ± 0.10 for the overlap of 250 unit cells. Thus, the con-
dition C is satisfied for small overlaps of the walls.

The minimum dimensions of the nanothermometer for
which the condition D can be fulfilled have been also estimated.
The condition D states that the amplitude of the thermal vibra-
tions of the movable wall has to be relatively small so that these
vibrations do not upset the normal operation of the nanother-
mometer. It is clear that the shorter the movable wall is, the
larger the amplitude of the vibrations of this wall become. In
principle, the diffusion of the shuttle along the fixed wall can
occur. This is an undesirable process which can hinder the op-
eration of the nanothermometer, and it needs to be prevented.

For the shuttle design (Fig. 3A), the displacement d of the
shuttle (1) must be less than the distance Les between the elec-
trode (3) and the shuttle in any given time t of the operation of
the nanothermometer, i.e.

(14)d = √
2Dt < Les,

where D is the diffusion coefficient for the motion of the shuttle
along the fixed wall (2). Expression for the diffusion coefficient
D has been given in [26] as follows

(15)D = A exp

(
−BL

T

)
, A = πδz

√
�Uz

2m
, B = �UzNa

lmk
,

where m is the mass of carbon atom, Na is the number of atoms
in the unit cell of the shuttle, lm is the length of the unit cell of
the shuttle, and L is the length of the shuttle. Thus, the length
Table 1
Characteristics of the nanothermometer based on the (6,6)@(11,11) DWNT
with the movable outer wall (shuttle): T (in K) is the temperature of the oper-
ation, t (in s) is the time of the operation, Lnt (in nm) is the minimal lengths
between the electrodes, Nc is the number of unit cells of DWNT corresponding
to the length of shuttle

T t lnt Nc

100 10−6 3.8 14
100 100 years 13.1 52
300 10−6 9.8 34
300 100 years 38 149

of the shuttle can be estimated as

(16)L = T

B
ln

(
2At

L2
es

)
,

and the total length Lnt of the nanothermometer between the
electrodes as

(17)Lnt = T

B
ln

(
2At

L2
es

)
+ 2Les.

The total length of the nanothermometer is minimal if
Lnt = T

B
. This condition for the minimum total length of the

nanothermometer does not depend on the time of its opera-
tion. Using the ab initio results of Section 2 for the barrier
�Uz of the (6,6)@(11,11) DWNT, parameter A is found to
be 1.05 ± 0.03 × 10−8 m2/s for the movable outer wall and
1.46 ± 0.04 × 10−8 m2/s for the movable inner wall. Parame-
ter B has the value of 380 ± 20 K/nm for both the inner and
outer walls. At T = 300 K, the temperature which corresponds
to the plateau on Fig. 2, the length Les is approximately 0.8 nm.
This dimension is only three times greater than the transla-
tional length of the unit cell of the (6,6)@(11,11) DWNT,
lc = 0.244 nm.

Table 1 shows the total length of the nanothermometer Lnt
which operates at the temperatures T = 100 K and T = 300 K
in two different regimes: the permanent mode of the opera-
tion during 100 years and the pulse mode with the time of the
operation of 10−6 s. These dimensions have been estimated
using Eq. (17). Since Lnt is a logarithmic function of A, the
total length of the nanothermometer is approximately the same
whether the inner wall is movable or the outer wall. Comparing
(16) and (17) and taking into account the estimated values of
Les and Lnt, it can be concluded that the length of the shuttle is
about the same as the total length of the nanothermometer, i.e.
L ≈ Lnt.

For the telescopic design (Fig. 3B), the length L in Eq. (16)
is the overlap between the movable wall (1) and the fixed walls
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(2) connected to the electrodes (3). In this case, the length of
the gap between the two fixed walls has to be added to the total
length of the nanothermometer. The proposed schematics of the
shuttle and telescopic nanothermometers are of a true nanome-
ter size which is governed merely by the length needed to attach
the electrodes.

The estimates based on the results of [10] show that the
value of H�T is significantly large only for small length of the
movable wall (tens of unit cells of DWNT). Thus, the shuttle
design of the nanothermometer based on the (6,6)@(11,11)

DWNT can be used in the permanent mode for the temper-
ature measurements up to 100 K and in the pulse mode for
the temperature measurements up to 300 K. According to the
ab initio results [35], the diffusion coefficient of the nonchiral
commensurate movable wall decreases with increasing the ra-
dius. It seems plausible that nonchiral commensurate DWNTs
with large radii can be used in the nanothermometers which can
measure the room temperatures in the permanent regime.

5. Concluding remarks

A new type of an electromechanical nanothermometer which
can be used for accurate temperature measurements in spatially
localized regions with dimensions of several hundred nanome-
ters has been proposed. The nanothermometer can be calibrated
using a thermocouple. Since the temperature measurements are
based on the conductivity measurements, the nanothermometer
can provide as accurate measurement of the temperature as a
thermocouple.

Another type of nanothermometer based on gallium-filled
carbon nanotubes has been recently reported [36,37]. In this
nanothermometer, the temperature measurements are based on
the thermal expansion of a column of liquid gallium inside a
carbon nanotube of 10 µm long. This method relies on the
identification and calibration of the nanothermometer in a trans-
mission electron microscope. Such shortcoming limits the use
of such nanothermometer in nanodevices.

A considerable progress has been recently achieved in the
nanotechnology techniques in the field of production of NEMS.
A nanomanipulator can be now attached to MWNT in order
to move individual walls [38,39], manipulation with SWNTs is
routinely possible [39,40], the caps of the walls can be removed
[41–43], nanotubes can be cut into pieces of desirable length
[44]. Recently, the techniques for unambiguous determination
of chirality of the walls have been successfully demonstrated
[45]. All these give us a cause for optimism that the proposed
new type of the electromechanical nanothermometer will be
produced in the near future.
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