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Sequential multiscale modelling of SiC/Al nanocomposites reinforced
with WS2 nanoparticles under static loading
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The mechanical behavior of SiC/Al nanocomposites reinforced with inorganic fullerene IF-WS2 nanoparticles
has been studied under static loading conditions. Density functional theory calculations, in conjunction with
the finite strain method, have been undertaken to provide a complete set of elastic constants for defining the
transversely isotropic behavior of a layered structure of WS2 bulk. The values of the elastic stiffness coefficients
predicted by density functional theory are summarized in Voigt notation as C11 = 236 GPa, C12 = 53 GPa,
C13 = 92 GPa, C33 = 42 GPa, and C44 = 12 GPa. These results are used within the finite element method to yield
a computationally efficient model that links static properties of inorganic fullerenes at the atomistic level with the
aggregate behavior of the entire nanocomposite described as a continuous medium. The latter involves a finite
element model of a unit cell of the nanocomposite, represented as an intersecting simple cubic structure. The
resulting elastic properties, which have cubic symmetry, are then used in conjunction with the Voigt-Reuss-Hill
model to obtain properties of the isotropic aggregate. The resulting computed Young’s modulus, Poisson’s ratio,
and shear modulus of the SiC/Al nanocomposite reinforced with WS2 nanoparticles are in a good agreement
with analytical predictions.
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I. INTRODUCTION

Lightweight high performance ceramic/metal composites
have recently attracted intense academic and industrial in-
terest due to their high strength, ductility, and hardness,
as well as the ability to withstand severe shock loadings.1

Rapid development of these composites, focused mainly on
inclusion of ceramic nanoparticles such as B4C, SiC, TiB2,
and Al2O3, offers a great potential for utilization in many
critical protective applications.2,3 It has been confirmed both
experimentally4 and theoretically5 that these composite mate-
rials can exhibit much higher strength and hardness than their
parental bulk counterparts, not only under general ambient
conditions but also under high shock loadings. Additional
incorporation of inorganic fullerene-like (IF) nanoparticles
into ceramic/metal matrices leads to a new form of multiphase
nanocomposites6 with potentially improved shock absorbing
properties. Nanocomposites containing IF-WS2 nanoparticles
have already demonstrated outstanding tribological and wear
properties.7 The inclusions themselves, for example IF-WS2

nanotubes, have been shown to have shock absorbing proper-
ties matching those of the best impact resistant materials (e.g.,
SiC used in protective armour applications) and high tensile
steel.8–10 Similar to IF-WS2 nanotubes, IF-WS2 fullerenes
are hollow multilayered structures, but with approximately
spherical shape. They can act as molecular absorbers in the
SiC/Al nanocomposite, damping shock energy through the
large interlayer separation (van der Waals gap) similar to that
of the bulk interlayer distance of 0.62 nm. Thus a combination
of a tough and strong SiC/Al matrix, which effectively stops
fragment penetration and perforation, with energy-absorbing
IF-WS2 nanoparticles, could ultimately offer the next genera-
tion of antishock materials.

The high demand on imminent utilization of the advanced
multiphased ceramic nanocomposites under severe loading

conditions requires an improved understanding of the relation-
ship between the atomic and macrostructure of these materials
and its effect on the shockwave response. A detailed analysis of
the influence of multiple phases on the mechanical and elastic
properties could elucidate the advantages of these nanocom-
posites compared to the corresponding single-phase materials.
The finite element modelling of hollow, faceted IF-WS2

nanoparticles under compression was recently reported by
Kalfon-Cohen et al.11 In their work the mechanism of failure
under compression was investigated using a modification of a
model previously published for WS2 nanotubes.12

The present work is motivated by a need to model the
response of IF-WS2-containing nanocomposites to a variety of
load cases, beginning with simple static loads and progressing
via a range of dynamic situations, with a view to constrtucting
a comprehensive explicit FE model of the material’s response
to shock and impact loads. It is also motivated by the need for
a set of reliable and complete input data for such an analysis.
In this paper, a first stage of this analysis is reported, focusing
on the generation of reliable material property data for WS2

and the prediction of elastic properties for the nanocomposite.
The methodology employs a sequential multiscale modelling
approach (as classified by, for example, Lu and Kaxiras13) also
referred to as hierarchical multiscale modeling14 that combines
atomic level investigation of the elastic properties of the WS2

bulk material with the continuum level study of the aggregate
behavior of an example SiC/Al nanocomposite impregnated
with IF-WS2 nanoparticles. This is in contrast to a concurrent
multiscale approach where the models at different scales are
coupled and run simultaneously, for example a coupled FE/MD
simulation.13 The paper is organized in three further sections.
In Sec. II the adopted methodology is described, and the results
for the elastic properties of bulk WS2 and MoS2 (included
as a test study) materials computed with density functional
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FIG. 1. (Color online) Sequential multiscale approach: (a) TEM
lattice image of IF particle showing layered structure as adopted
from;16 (b) a unit cell of the bulk material used in DFT: tungsten
(molybdenum) atoms are denoted in green and sulfur atoms are
denoted in yellow; (c) interpenetrating simple cubic unit cell of the
nanocomposite used in the mechanical FE model: a SiC nanoparticle
is in the center of the unit cell; IF-WS2 nanoparticles are in the corners
of the Al matrix.

theory (DFT) including dispersion corrections are presented.
In Sec. III, the results of the static loading finite element simu-
lation of the multiphase nanocomposite are discussed and com-
pared with the existing theoretical approach of Budiansky.15 In
Sec. IV we analyze the obtained results and draw conclusions.

II. CALCULATION OF THE ELASTIC PROPERTIES
AT THE ATOMIC LEVEL

As the diameter of the IF nanoparticles is approximately
100 nm16 and therefore much larger than the interlayer spacing,
the curvature of the particles has been ignored, and in the DFT
calculations of the structure and the elastic properties, the
WS2 and MoS2 materials have been treated as bulk structures.
Three approximations for the exchange-correlation energy
have been explored, namely the local density approximation
(LDA/CA-PZ17,18), and the Perdew-Burke-Ernzerhof (PBE19)
and the Perdew-Wang (PW9120) parametrizations of the
generalized gradient approximation (GGA). Van der Waals
interactions have been included using the semiempirical
dispersion corrections to the total DFT energies. The OBS
dispersion scheme21 has been used for the LDA and PW91

functionals, and the G06 scheme22 has been used for the PBE
functional as implemented in CASTEP 5.5 quantum chemistry
code.23 A unit cell consisting of six atoms has been used as
shown in Fig. 1(b). An on-the-fly pseudopotential generator
has been used to eliminate the core states and describe the
valence electrons by nodeless pseudo-wave functions. A plane
wave basis set with the cutoff energy of 440 eV has been
used, and the Monkhorst-Pack grid of 12 k points has been
employed to sample the Brillouin zone. This approach has
been initially used on the MoS2 bulk material for which there
is ample theoretical and experimental structural data24–26 (see
Table I). The structural data for WS2 bulk have also been
predicted and compared in Table II against the more limited
and less complete published data.27–29 The authors judged it
essential to perform a robust test of the ab initio predictions
prior to calculating the WS2 elastic properties for which no
complete set of data appears to be available in the literature.

Inclusion of dispersion interactions in DFT calculations
improves the prediction of the interlayer equilibrium geometry
of the MoS2 and WS2 bulk, yielding a better agreement
with experiment. This is particularly evident for the GGA
functionals (see Tables I and II). For example, the optimized
GGA/PW91 + OBS values of the lattice parameters for WS2

are calculated to be a = b = 0.318 nm, c = 1.250 nm in
good agreement with experiments.27,28 The W-W distance
is found to be 0.61 nm in the c direction and 0.31 nm
in the ab plane, which is also consistent with the values
reported in the literature.27 The GGA + OBS values of the
layer thickness 2cz′ and the lattice constant c are closer
to experimental values27,28 than previously reported GGA
evaluations29 without dispersion correction. Similarly good
agreement is seen in Table I for MoS2, where experimental
values of the vdW gap and the Mo-S bond length are
additionally available for comparison with predictions.

Having obtained the optimized structures of MoS2 and
WS2 the full elastic constant tensors have been calculated for
both structures. According to Hooke’s law,30 the relationship
between stress and strain can be linearly expressed as

σi = Cij εj , (1)

where Cij is the stiffness matrix.
The elastic constants, in the form of the stiffness matrix,

are obtained within the CASTEP package using the finite
strain method described by Milman and Warren31 and in

TABLE I. Equilibrium geometry (in nm) of the MoS2 bulk material: a and c are the lattice parameters
of the unit cell, 2cz′ is the thickness of the layer as shown in Fig. 1(b), and d(Mo-S) is the length of
molybdenum-sulfur bond.

MoS2 bulk a c 2cz′ vdW gap d(Mo-S)

Experiment24 0.316 1.230 0.317 0.298 0.242
LDA/CA-PZ + OBS [this work] 0.310 1.176 0.311 0.277 0.237
GGA/PBE + G06 [this work] 0.318 1.235 0.311 0.306 0.241
GGA/PW91 + OBS [this work] 0.317 1.240 0.313 0.307 0.241
LDA/VMN25 0.317 1.287 0.332 0.312 0.247
GGA/PW25 0.318 1.302 0.336 0.315 0.248
GGA/PBE26 0.318 1.468 0.411 – –
GGA/PBE + D226 0.319 1.242 0.323 – –
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TABLE II. Equilibrium geometry (in nm) of the WS2 bulk material: a, c, 2cz′ and d are
defined in Table I.

WS2 bulk a c 2cz′ vdW gap d(W-S)

Experiment27 0.310 1.240 – – –
Experiment28 0.315 1.232 0.296 – –
LDA/CA-PZ + OBS [this work] 0.311 1.183 0.312 0.279 0.238
GGA/PW91 + OBS [this work] 0.318 1.250 0.315 0.310 0.242
GGA/PW29 0.315 1.253 0.325 – –
LDA/CA-PZ29 0.308 1.186 0.285 – –

the CASTEP theory documentation.32 Prescribed strains are
applied to the unit cell, the structure is optimized for each
deformed state, and the stresses for each strain state are
calculated. Only small values of strains were applied in order
to remain within the elastic region of the compounds. The
elastic stiffness coefficients Cij within a general definition of
Hooke’s law are then obtained by fitting the stresses as a linear
function of strains. The fitting procedure is necessary because it
is not possible to calculate elastic properties of the compounds
from applying just one value of strain.33 In the present work,
a strain of 0.007 was applied in nine incremental steps, and it
was found to give a good compromise between nonlinearity
and numerical errors.

Since MoS2 and WS2 bulk materials form hexagonal
crystals with a layered structure, it is assumed that these
materials are transversely isotropic (in common with other
materials with hexagonal structure),34 so that they can be
characterized by a set of five independent elastic constants.35,36

Distinct, nonzero terms from the stiffness matrices for MoS2

and WS2 are presented in Tables III and IV, respectively.
Our assertion that the materials are transversely isotropic is
supported by noting that C11 = C22, C13 = C23, C44 = C55, and
C66 = C11−C12

2 to an accuracy of at least 1%. Both materials
show a high degree of elastic anisotropy, with the highest
stiffness constants being C11 = C22 along the a axis and b

axis, respectively, where deformation involves bond bending
and bond stretching. The stiffness constant C33 is significantly
lower (approximately by a factor of 5) because it involves weak
interlayer van der Waals forces.

It is straightforward to show that the single-crystal bulk
modulus, Ktrans, of each of these transversely isotropic com-
pounds can be calculated from the elastic constants, namely
Young’s moduli, Ei , and Poisson’s ratios, νij , as follows:

Ktrans = 1

2 (1 − ν12) /E1 + (1 − 4ν31) /E3
, (2)

where37

E1 = C2
11C33 + 2C2

13C12 − 2C11C
2
13 − C2

12C33

C11C33 − C2
13

, (3)

E3 = C2
11C33 + 2C2

13C12 − 2C11C
2
13 − C2

12C33

C2
11 − C2

12

, (4)

ν12 = C12C33 − C2
13

C11C33 − C2
13

, (5)

ν31 = C13

C11 + C12
. (6)

The computed GGA values for Ktrans of transversely
isotropic structures are very close to the experimental
values38,39 for the MoS2

38 and WS2
39 bulk structures obtained

by fitting the pressure-volume data (derived from lattice
parameter measurements under pressure loading) to the third-
order Birch-Murnaghan equation of state (see Tables III and
IV). The LDA/CA-PZ + OBS approach, however, overesti-
mates Ktrans by about 20%. The values of C11, C33, and C44 for
the MoS2 bulk, calculated using GGA in conjunction with PBE
and PW91 functionals with empirical dispersion correction,
agree well (within 10% or less) with Feldman’s data40 though
agreement is poorer for C13 and irreconcilable with Feldman’s
surprising negative inferred value for C12. The LDA C33 values
are in poorer agreement with all other values including a
large mismatch (up to 47%) with the experimental data of
Sourisseau.41 In general, the LDA results with OBS dispersion
scheme both for lattice parameters and for the elastic properties
of MoS2 are in the poorest agreement with the experimental
data. The components of the elastic matrix calculated for the
WS2 bulk, using both LDA and PW91 functionals including
empirical dispersion correction, are in disagreement with
Sourisseau’s experimental data.41 The values of C11 are at least
60% different. PW91 with OBS dispersion scheme, however,

TABLE III. Stiffness matrix, Cij (in GPa), and bulk modulus, Ktrans (in GPa), of the MoS2 bulk obtained using
Eq. (2). Duplicate and zero elements of Cij are omitted.

MoS2 bulk C11 C33 C44 C66 C12 C13 Ktrans

Experiment38,41 17441 46.641 2741 – – – 53.438

Experiment40 238 52 19 – − 54 23 –
LDA/CA-PZ + OBS [this work] 256 88 33 98 62 17 64.2
GGA/PBE + G06 [this work] 214 56 18 78 58 13 45.1
GGA/PW91 + OBS [this work] 217 50 23 81 55 10 40.4
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TABLE IV. Stiffness matrix, Cij (in GPa), and bulk modulus, Ktrans (in GPa), of the WS2 bulk obtained using Eq. (2).
Duplicate and zero elements of Cij are omitted.

WS2 bulk C11 C33 C44 C66 C12 C13 Ktrans

Experiment39,41 15041 6041 1641 – – – 6139

LDA/CA-PZ + OBS [this work] 281 89 32 110 61 19 66.5
GGA/PW91 + OBS [this work] 236 42 12 92 53 8 59.7

gives the lowest energy for both MoS2 and WS2 bulk materials
and therefore the GGA/PW91 + OBS elastic properties are
taken forward for use within the continuum finite element
model in the form of the stiffness matrix components Cij .

III. ELASTIC PROPERTY CALCULATION FOR
NANOCOMPOSITE AT THE NANOPARTICLE SCALE

A. Finite element model of the nanocomposite

As a first stage towards understanding the behavior of the
nanocomposite under a range of load cases, the elastic proper-
ties obtained from DFT calculations have been subsequently
used in simulations of the nanocomposite using the finite
element method (FEM).42 The FEM involves discretizing a
structure into a large number of regions or elements, each
associated with an appropriate material model, and the defor-
mation of the structure is defined in terms of displacements of
the nodes to which each element is linked. The relationship
between nodal displacements and forces takes the form of a
stiffness matrix calculated from the mechanical properties and
geometry of each element. In the present (quasistatic) problem,
an implicit solution method is used in which the unknown
quantities (unrestrained displacements and reaction forces at
restrained nodes) are found using linear algebra techniques.
Here, the prediction of the nanocomposite’s behavior has
been performed using a unit cell model established within the
ABAQUS finite element system,43 which is a commercially
available suite of software for solving engineering mechanics
problems using the techniques described above. The true
structure will have randomly distributed particles of WS2

and SiC incorporated in an Al matrix with no particular
directionality. As a first approximation each WS2 particle
is assumed to have a perfect hollow spherical shape having
transversely isotropic properties such that the local x and
y directions are tangential to the spherical surface and the
local z direction is radial. In order to represent such a
material via a unit cell model of a manageable size, a regular

structure has been adopted as a first approximation which for
convenience initially assumes an interpenetrating simple cubic
configuration [Fig. 1(c)] identical to caesium chloride crystal
structure. The mechanical properties, particle dimensions, and
volume fractions used to generate the ABAQUS models are
presented in Table V. The WS2 properties were defined in the
model using a local spherical coordinate system.

The bounding planes of the unit cell are defined as follows:

−h1

2
� x � h1

2
, −h2

2
� y � h2

2
, −h3

2
� z � h3

2
, (7)

where x, y and z are the Cartesian coordinates of the unit
cell, and h1, h2 and h3 are respectively its dimensions in the
three Cartesian directions. In the present case h1 = h2 =
h3 = 100 nm. The planar and rotational symmetries of the unit
cell allow a simplified form of periodic boundary conditions,
which, for the application of direct strains, are implemented
as follows [Fig. 2(a)]:

x = ±h1/2 : u = ±u0; y = ±h2/2 : υ = 0;
(8)

z = ±h3/2 : ω = 0,

where u, υ, and ω are uniform displacements applied to the
opposing faces perpendicular to the three Cartesian axes, and
u0 is a displacement value chosen to achieve an appropriate
level of strain, in the present case 0.001 or 0.1%. In a similar
manner, the following boundary conditions were used for
application of shear strains [Fig. 2(b)]:

x = ±h1/2 : υ = 0, ω = 0;

y = ±h2/2 : u = ±u0, ω = 0; (9)

z = ±h3/2 : ω = 0.

Figure 3 depicts the distorted shape of the unit cell, with
the displacements exaggerated for clarity and with the stresses
shown as color contours. Noting that the configuration of the
unit cell is symmetric over the three Cartesian directions, the
components of the stiffness matrix for the nanocomposite were

TABLE V. Mechanical properties of materials used for the FEM analysis. The elastic properties of WS2 are given here for comparison, and
are an alternative representation of the stiffness matrix components presented in Table IV for PW91 + OBS, which were used directly as the
FE input data.

Young’s modulus, E (GPa) Poisson’s ratio,ν Volume fraction (%) Radius (nm)

Al 7048 0.3548 39.7 Matrix
SiC 40048 0.1948 40.8 46

Longitudinal (circumferential) 224 ν12 0.22 19.5a 36
WS2 Transverse (radial) 42 ν13 0.15

aThis is the fraction of the overall volume which is enclosed by the nanoparticle; the volume fraction of the solid WS2 is 17.1% and that of the
enclosed void is 2.4%.
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recovered from the reactions at the unit cell boundaries using
the following relations:

C11 =
∑

RFx

Ax

1

εx

; C12 =
∑

RFy

Ay

1

εx

;

(10)

C13 =
∑

RFz

Az

1

εx

; C44 =
∑

RFx

Ax

1

γxy

,

C11 = C22 = C33, C12 = C21,
(11)

C13 = C23 = C31 = C32, C44 = C55 = C66,

where εx = 2u0

h1
is the extensional strain in the x direction and

γxy = 2u0

h2
is engineering shear strain in the xy plane. RFx ,

RFy , and RFz are reaction forces occurring in the x, y, and
z directions, respectively. Ax , Ay , and Az are the projected
areas (taken to be equal in the present case) of the unit cell
normal to the x, y, and z directions respectively so that Ax =
hy hz etc. Mesh convergence was demonstrated by confirming
that C11 changed by − 0.1% as the number of elements was
approximately doubled from 98804 to 216215.

B. Results of the finite element simulations

The stiffness and compliance components of the nanocom-
posite recovered by this method are

Cij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

180.22 60.40 60.41 0 0 0

60.40 180.22 60.41 0 0 0

60.41 60.41 180.22 0 0 0

0 0 0 48.49 0 0

0 0 0 0 48.49 0

0 0 0 0 0 48.49

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

Sij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00667 −0.00167 −0.00167 0 0 0

−0.00167 0.00667 −0.00167 0 0 0

−0.00167 −0.00167 0.00667 0 0 0

0 0 0 0.02062 0 0

0 0 0 0 0.02062 0

0 0 0 0 0 0.02062

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

It should be noted that the assumed particle configuration
is an idealization, which acts as a first approximation to what
is in reality a random structure with no preferential directions.
Therefore, the model would not be expected to produce the
isotropic properties of the true random material, and the
predicted properties are those of a cubic material which needs
three independent elastic constants to be defined. Specifically,
its elastic behavior is uniquely defined by any three of the
follows constants, which can be calculated from the cubic

FIG. 2. Periodic boundary conditions for the FE model. The
uniform displacements are (a) applied to the left and right surfaces
for the FE simulations under direct stresses and (b) to the top and
the bottom surfaces for obtaining shear components. By contrast, the
remaining surfaces are fixed against any movements.

stiffness matrix:37

E = C2
11 + C12C11 − 2C2

12

C11 + C12
, ν = C12

C11 + C12
, (14)

K = 1

3
(C11 + 2C12) , G = C44. (15)

The model yields the following values: K = 100.34 GPa,
G = 48.49 GPa, E = 149.90 GPa, and ν = 0.2510.

The realistic material with a random structure can then be
considered to consist of an isotropic aggregate with a locally
cubic structure. Voigt and Reuss44,45 approximations give the
theoretical maximum and the minimum values of the average
isotropic elastic moduli, respectively. The Voigt approximation
assumes that the uniform strain in the compounds is equal to
external strain and the Reuss approximation assumes that the
uniform stress in the compounds is equal to external stress.
The Reuss bulk modulus KR and the Voigt bulk modulus KV

are equal for cubic materials46 and are given by

KR = KV = 1
3 (C11 + 2C12) , (16)

and the Reuss shear modulus GR and the Voigt shear modulus
GV are given by

GV = 1

5
(C11 − C12 + 3C44), GR = 5

4(S11 − S12) + 3S44
.

(17)
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FIG. 3. (Color online) Three-dimensional distorted view of the FE unit cell under (a) direct stresses and (b) shear stresses. Deformation
scale factor is 100. A uniform strain of 0.1% has been applied in both cases.

Hill46 demonstrated that the approximations of Voigt and
Reuss give upper and lower bounds of the isotropic moduli, re-
spectively, and recommended that the realistic approximation
of the isotropic moduli of isotropic aggregates is the arithmetic
mean of these limits. Hence the elastic moduli, Kiso and Giso

of the isotropic material can be approximated as

Kiso = 1
2 (KV + KR) , Giso = 1

2 (GV + GR) . (18)

Since these two constants now fully define the isotropic
material, the values of Poisson’s ratio νiso and Young’s modulus
Eiso are obtained by substituting the calculated values of Kiso

and Giso into

νiso = 3Kiso − 2Giso

2(3Kiso + Giso)
, Eiso = 9GisoKiso

3Kiso + Giso
. (19)

The obtained values are Kiso = 100.34 GPa, Giso = 52.79 GPa,
Eiso = 134.74 GPa, and νiso = 0.2762.

The authors are not aware of an analytical solution which
fully models a particulate with hollow, spherical, transversely
isotropic inclusions. However, Budiansky’s method,15 in turn
based upon Eshelby’s inclusion technique,47 finds the ag-
gregate elastic constants of an inhomogeneous material with
multiple isotropic phases taking the form of ellipsoidal or (as a

special case) spherical inclusions embedded in a matrix phase;
despite the assumption of inclusion shape, the solution reduces
to a form symmetric across all phases including the matrix.
Budiansky’s solution is used here to obtain two estimates of
the overall modulus of the nanocomposite. Both estimates treat
the hollow interior of the nanoparticles as a fourth phase of zero
modulus and volume fraction 2.4% and use the moduli for the
SiC and the Al phases directly from Table V. They also both
treat the nanoparticles as isotropic and with a volume fraction
equal to the true volume fraction of their solid component
(17.1%). It is also assumed that their Poisson’s ratio is 0.22,
equal to ν12 for the WS2 from Table V. However, one estimate
assumes that the Young’s modulus for the nanoparticles takes
a value of 224 GPa numerically equal to E1 = E2, while
the other assumes a value of Young’s modulus of 60 GPa
which gives the same bulk modulus as for the transversely
isotropic WS2 in Table IV. The results of this comparison
are presented in Table VI. While no attempt has been made
to explore whether these estimates are indeed bounds on the
true value of the nanocomposite modulus, it is reassuring that
the estimate of average isotropic Eiso calculated from the FE
model lies close to the one of the estimates of Budiansky with
E(WS2) = 60 GPa, while the FEM estimate of Poisson’s ratio
is within 7% of the Budiansky estimates.

TABLE VI. Comparison of elastic properties of the isotropic composite from the DFT/FEM approach and Budiansky analytical model.15

DFT/FEM approach Budiansky analytical model15

Assumptions for Eiso Giso Assumptions for Eiso Giso

isotropic materials (GPa) νiso (GPa) isotropic materials (GPa) νiso (GPa)

Equations 134.74 0.2762 52.79 E = E1 = E2 = 224, 169.82 0.2544 67.16
(16)–(19) ν = ν12 = 0.22

E = 3Ktrans(1 − 2ν) = 60, 130.63 0.2574 51.97
ν = ν12 = 0.22

where
Ktrans = 1

2(1−ν12)/E1+(1−4ν31)/E3

in which
E1 = 224, E3 = 42,

ν12 = 0.22, ν13 = 0.15
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FIG. 4. (Color online) Stresses in the yz cross-sectional areas under (a) direct stresses and (b) shear stresses.

It is seen in Fig. 3(a), and from closer examination of the
FEM output, that the highest stresses in the direct loading
situation occur as circumferential direct stresses in the loading
direction, at the surface of the nanoparticles. It is noteworthy
that the transverse and shear flexibility of the WS2 prevents
transmission of significant load to the inner layers. Similarly,
the shear loads are carried as shear stresses at the surfaces
of the nanoparticles [Fig. 3(b)]. The stresses in the ceramic
reinforcement, and in the metallic matrix, are considerably
lower than in the WS2 nanoparticles, and it would appear
that the load carrying mechanism of the nanoparticles acts to
avoid stress concentrations in either of these two phases at the
expense of causing a relatively large stress concentration in the
nanoparticle (Fig. 4). While the response of WS2 particles to
Hertzian crushing loads has been explored elsewhere,49 we are
not aware of work characterizing their response to the present
load cases and with present application.

The case study presented here acts as a feasibility study
in which the modelling of IF particles with local spherically
orthotropic properties has been achieved, and the results of
the analysis demonstrated to be consistent with alternative
approaches. This lays the foundations for undertaking more
sophisticated analyses, involving larger numbers of particles
and more specialized (explicit) solution methods, in order to
model the response of the nanocomposite to more challenging
load cases such as shock and impact. In order to model the
dynamic and failure response of the composite under high
rate loading conditions, it will also be necessary to consider
the strength of the IF particles and of the interfaces between
particles and matrix material.

IV. SUMMARY

In conclusion, the present work has provided a rigorous
theoretical prediction of MoS2 and WS2 elastic properties.
For MoS2 where more complete existing data are available,
excellent agreement has been observed, giving confidence in
the predictions for WS2. The structural geometric data for both
compounds agree well with the existing published data. The
present work also incorporates the predicted elastic properties
for WS2 into the first mechanical analysis of WS2/ceramic
nanocomposites. This work both explores the load carrying
mechanisms of the IF particles, and serves as a feasibility study
for testing the mesh generation, boundary condition, and prop-
erty definition procedures required in more complex analyses.
Future work will concentrate upon extending the mechanical
analysis to consider more practical particle architectures and
load cases, and to incorporate failure predictions via interface
properties derived from MD calculations.
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