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Theory is developed to address a significant problem of how two charged dielectric particles interact
in the presence of a polarizable medium that is a dilute solution of a strong electrolyte. The electro-
static force is defined by characteristic parameters for the interacting particles (charge, radius, and
dielectric constant) and for the medium (permittivity and Debye length), and is expressed in the form
of a converging infinite series. The limiting case of weak screening and large inter-particle separation
is considered, which corresponds to small (macro)ions that carry constant charge. The theory yields
a solution in the limit of monopole and dipole terms that agrees exactly with existing analytical
expressions, which are generally used to describe ion-ion and ion-molecular interactions in a medium.
Results from the theory are compared with DLVO theory and with experimental measurements for the
electrostatic force between two PMMA particles contained in a nonpolar solvent (hexadecane) with
an added charge control agent. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4961091]

I. INTRODUCTION

The study of interactions between charged particles
in a medium, which includes charge carriers, such as
electrons, and ions, is of considerable importance to
many scientific applications including coalescence and
self-assembly of colloidal systems,1 complex plasmas,2
biochemical interactions,3 and atmospheric physics and
chemistry.4 The majority of experimental observations are
interpreted using the standard Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory5,6 of colloidal stability assuming
polarisation effects can be neglected. For low values of the
surface electrostatic potential, �S < 25 mV, the electrostatic
force between two small particles or ions is typically described
within the Debye-Hückel approximation,

F =
Q1Q2

4��0kmR2 (1 + �R) e−�R,

where �−1 is the characteristic decay length of the electrostatic
potential (the Debye length), R is the separation distance
between the particles carrying the charges of Q1 and Q2, km is
the dielectric constant of the medium, and �0 is the dielectric
permittivity of vacuum.

Since publication of the Debye-Hückel theory of dilute
electrolytes,7 a number of attempts have been made to extend
the theory to finite, polarisable particles. The solubility
of glycine Zwitterions in alcohol-water mixtures has been
investigated8 within the Debye-Hückel approach, where the
Zwitterions were represented as dielectric spheres containing
discrete point charges inside and the potential was expanded
up to the fourth order multipole moment. A similar problem
has been solved in terms of an infinite series9 using an
expansion of modified Bessel functions, and the interaction

a)Author to whom correspondence should be addressed. Electronic mail:
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energy has been deduced asymptotically to give a familiar
expression for two finite-size ions. The problem of two
identical colloidal particles with a continuous distribution
of surface charge has been solved up to the quadrupole
term.10 The electrostatic force between two uniformly charged
spheres in a finite region of an ionized medium has been
derived11 using an infinite multipole expansion, however
the interaction turned out to be dependent on the form
of external boundary. Analytical solutions for an infinite
ionized medium have also been given for the case of a point
charge interacting with either a conducting12 or a dielectric
sphere.13

It has been shown recently that contributions arising
from polarisation effects can strongly influence the overall
electrostatic interaction between dielectric particles, leading
to a rather unusual behaviour, such as attraction between
like-charged particles at close interaction distances.14,15
These studies presented analytical models to account for
the interaction between charged dielectric spheres either
in the absence14 or the presence of an external electric
field.15 Bichoutskaia et al.14 solved the problem in the
spherical coordinate system through re-expansion of Legendre
polynomials, whilst Munirov et al.15 arrived at the same
solution using bi-spherical coordinates. The bi-spherical
coordinate system was later adopted to derive an analytical
expression for the electrostatic force between a charged
dielectric sphere and a planar surface.16

As an alternative to the boundary value problem, a
multiple scattering formalism has been used to study many-
body systems containing spheres of the same charge and
dielectric constants.17 Other approaches based on a description
of individual particles rather than a mean field include an
image-charge method18 and a boundary-element method.19
Benchmarking of the latter two methods was performed by
Gan et al.,20 and their application to pair interactions in
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electrolyte solution demonstrated the strong effect ions have
on the forces between colloidal particles.

In this work, we present a new analytical solution, which
extends our understanding of how charged dielectric particles
interact with one another to situations where the particles
are suspended in an electrolyte solution. The electrostatic
problem of two polarizable particles in solution has been
solved for a relatively low concentration of electrolyte, and the
methodology is validated using experimental measurements21
performed on two PMMA spheres in a nonpolar solvent
(hexadecane). At a more general level, the proposed solution
can be used to study colloidal systems with high and/or
widely different dielectric constants, when suspended in an
electrolyte.

II. MODEL

A. Problem statement and basic assumptions

The electrostatic interaction between two dielectric
particles is assumed to take place in a medium described
by a dielectric constant and a Debye length. The dielectric
constant represents the characteristic polarisation response
of an isotropic and uniform medium. The Debye length
is related to both the electrostatic and the thermodynamic
properties of the medium, and it describes the shielding effect
of an electrically neutral subsystem of charge carriers on
propagation of the electric field. In this case it is necessary
to define a self-consistent potential, � (r), for both the
interacting spheres and the ionic subsystem. If the ionic
subsystem is in thermodynamic equilibrium (a Boltzmann
distribution holds for ions at all distances from the charged
surface of a particle) and the ions are assumed to be point
charges interacting in accordance with Coulombs law, then
the electrostatic potential is the solution of the well-known
Poisson-Boltzmann (PB) equation. The PB equation is a
general non-linear second-order differential equation; however
to solve it for � (r), the potential must satisfy a superposition
principle that requires the PB equation to become linear with
respect to � (r). The PB equation is solved within the Debye-
Hückel approximation, and in the case of an added electrolyte,
low ionic concentrations are assumed. The Debye length is
defined primarily by ionic strength (or molar concentration)
as temperature cannot be varied over a wide range. Finally,
within the framework of the electrostatic problem, the effects
of electrostriction, solvation and mechanical deformation are
excluded from consideration.

The assumptionsmade above allow us to state the problem
as follows. Two dielectric spherical particles are suspended in
an isotropic and uniform dielectric medium, which contains
an electrolyte. The system is kept at constant temperature,
and the interacting particles are placed sufficiently far from
any wall to negate the effect of an external boundary. A
graphical representation of the particle-particle interaction and
the associated physical parameters is shown in Fig. 1. Two
spherical dielectric particles with surface charge densities � i,
radii ai, and dielectric constants ki, (i = 1,2) are suspended in
a medium with a dielectric constant km and a Debye length
�−1. The medium is assumed to be electrically neutral and the

FIG. 1. A general geometry representation of the problem of two interacting
dissimilar colloidal particles suspended in an electrolyte solution with dielec-
tric constant km and Debye length �−1. Dielectric constants, surface charge
densities, and the radii for particles 1 and 2 are denoted as k1, � 1, a1, and k2,
� 2, a2, respectively.

electrolyte concentration sufficiently low for the interaction
energy to be small in comparison to that associated with the
thermal motion. Under these conditions, the self-consistent
electrostatic potential due to the presence of the particles
in the surrounding medium, �out, i (r), is described by the
linearized PB equation,

��out, i (ri) − �2�out, i (ri) = 0, (1)

and the potential inside the particles,�in, i (r), can be described
by the Laplace equation,

��in, i (ri) = 0. (2)

The linearity of the problem means that the total potential can
be expressed as

� =

������

�in, i, ri < ai,
�out,1 +�out,2 ��out, ri > ai.

(3)

Introducing a dimensionless radial coordinate, r̃i = �ri,
Eqs. (1) and (2) can be expressed in the following form:

�r̃ i�in, i (r̃i) = 0, �r̃ i�out (r̃i) −�out (r̃i) = 0,

where �r̃ i is the Laplace operator with r̃i as the radial
coordinate.

The boundary conditions for constant surface charge can
then be written as follows:

�in, i
�
r̃ i =ã i

= �out|r̃ i =ã i ,

ki
��in, i

�r̃i

�����̃r i =ã i

− km
��out

�r̃i

�����̃r i =ã i

=
�̃ i

�0
,

(4)

where the radii and the surface charge densities are expressed
as ãi = �ai, �̃ i = � i/�.

B. Analytical solution

1. Expansion of the potential and the surface charge
density in terms of Legendre polynomials

Since the linearized PB equation with � , 0 is a particular
case of the Helmholtz equation, it cannot be solved through
a separation of variables in the bi-spherical coordinate
system, therefore, two spherical coordinate systems have been
adopted, each with an origin at the centre of spheres. The
potential inside each sphere that satisfies the Eq. (4) can be
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expanded in terms of Legendre polynomials22

�in, i =

��

n=0

Bn, iPn (µi) r̃ni , µi = cos �i. (5)

The potential outside each sphere that satisfies Eq. (1) and
vanishes at infinity, takes the form23,24

�out, i =

��

n=0

An, iPn (µi)
Kn+1/2 (r̃i)�

r̃i
, (6)

where Kn+1/2 (r̃) are the modified Bessel functions of the third
kind. In the case of a non-uniform surface charge distribution,
but with azimuthal symmetry, the charge density can also be
expanded in Legendre polynomials,

�̃ i

�0
=

��

n=0

� i,nPn(µi). (7)

In order to apply the boundary conditions (4) and find the
coefficients An, i and Bn, i it is necessary to re-expand Eqs. (5)
and (6) for the potential in order to use just one set of spherical
coordinates for each sphere. Equation (6) can be re-expanded
by introducing a dimensionless distance between the centres
of the interacting particles in the form of R̃ = �R, such that
the modified Bessel functions now take the following form:24

Kn+1/2 (r̃i)�
r̃i

= r̃ni (2n − 1)!!
�

�

2

��

l=0

(2n + 2l + 1)

×
Kn+l+1/2

�
R̃

�

R̃n+1/2

In+l+1/2
�
r̃ j

�

r̃n+1/2j

Cn+1/2
l

�
µ j

�
, (8)

where j = 3 − i, In+l+1/2 (r̃) are the modified Bessel functions
of the first kind and Cn+1/2

l (µ) are the Gegenbauer
polynomials. At the surface, r j = a j < R, a solution is sought
only for the force along the z axis (Fig. 1). The Legendre
polynomial in Eq. (6) can be represented as

r̃ni Pn (µi) =
n�

k=0

(−1)k n!
k! (n − k)! r̃

k
j R̃

n−kPk

�
µ j

�
. (9)

Substituting Eqs. (8) and (9) into Eq. (6) the potential outside
each sphere is given by

�out, i =

��

n=0

An, i (2n − 1)!!

×
��

l=0

�n+l+1/2
�
r̃ j, R̃

�
Cn+1/2
l

�
µ j

�

×
n�

k=0

(−1)k n!
k! (n − k)!

1
R̃kr̃n−kj

Pk

�
µ j

�
,

where

�l+1/2
�
r̃ , R̃

�
=
�
2�

(
l +

1
2

)
Kl+1/2

�
R̃

�

R̃1/2

Il+1/2 (r̃)
r̃1/2

. (10)

As proposed previously,25 it is necessary to re-expand the
product of Gegenbauer and Legendre polynomials in terms
of Legendre polynomials in order to obtain a series linear
in Pn

�
µ j

�
. Using explicit expressions for Legendre and

Gegenbauer polynomials in terms of µ j
26

Pk (µ) =
[k/2]�

�=0

(−1)� (2k − 2�)!
�! (k − �)! (k − 2�)!

µk−2�

2k
�

k�

�=0

�k�µ
�,

Cn+1/2
l (µ) =

[l/2]�

i=0

[2n − 1 + 2 (l − i)]!!
(2n − 1)!!

× (−1)i
i! (l − 2i)!

µl−2i

2i
�

l�

i=0

�nliµ
i,

and expanding each power of µ j in terms of Legendre
polynomials27

µk =
[k/2]�

l=0

k! (2k + 1 − 4l)
(2l)!! (2k + 1 − 2l)!!Pk−2l (µ) �

k�

l=0

pklPl (µ) ,

an expression for the potential is obtained in the following
form:

�out, i =

��

n=0

Pn

�
µ j

� ��

l=0

bnl
�
r̃ j, R̃

�
Al, i, (11)

where

bnl
�
r̃ , R̃

�
= (2l − 1)!!

��

m=0

l�

k=0

(−1)k l!
k! (l − k)!

×
�l+m+1/2

�
r̃ , R̃

�

R̃kr̃ l−k

k�

�=0

�k�

m�

i=0

�mlipi+�,n.

In order to apply the boundary conditions (4), the first
derivatives of the potential are also required; inside the
spheres, this is given by

��in, i

�r̃i

�����̃r i =ã i

=

��

n=0

nBn, iPn (µi) ãn−1i , (12)

whereas in the medium, the derivative of the potential takes
the following form:24

��out, i

�r̃i

�����̃r i =ã i

=

��

n=0

An, iPn (cos �i)

× nKn+1/2 (ãi) − ãiKn+3/2 (ãi)
(ãi)3/2

. (13)

The derivatives ��out,i
�r̃ j

����̃r j=ã j
are expressed as

��out, i

�r̃ j

�����̃r j=ã j

=

��

n=0

Pn

�
µ j

� ��

l=0

Al, i

�bnl
�
ã j, R̃

�

�ã j
. (14)

Rewriting the boundary conditions (4) in accordance with the
Eqs. (11)–(14) gives

� n (ãi, ki) An, i +

��

l=0

�nl (ãi, ki) Al, j = � i,n, (15)

where

� n (ãi, ki) = km
Kn+3/2 (ãi)

ã1/2i

+ n (ki − km)
Kn+1/2 (ãi)

ã3/2i

,

�nl (ãi, ki) = kin
1
ãi
bnl

�
ãi, R̃

�
− km

�bnl
�
ãi, R̃

�

�ãi
.

(16)
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2. An expression for the electrostatic force

The Maxwell stress tensor is used to calculate the
interaction force acting on each sphere.28 The force acting
on sphere 1 by the presence of sphere 2 is expressed as

F1 =

�

S1

T1ndS, (17)

where

T1n = �0km
(
EnE −

1
2
nE2

)

= �0km
�
1
2

�
E2
n − E2

�

�
n + EnE��

�

is the normal component of the Maxwell stress tensor, which
represents the electrostatic shear stress and the pressure on the
“medium-sphere” boundary in the absence of any mechanical
deformation and electrostriction. Here

En = −��out

�r1

�����r1=a1
, E� = − 1

r1
��out

��1

�����r1=a1
(18)

are the normal and the tangential components of the self-
consistent electric field, respectively. Using Eqs. (3), (6), and
(11) an expansion for the self-consistent potential outside
the spheres in terms of Legendre polynomials can be
obtained,

�out (r̃1,�1) =
��

n=0

�
An,1

Kn+1/2 (r̃1)�
r̃1

+

��

l=0

bnl
�
r̃1, R̃

�
Al,2

������
Pn (cos �1) . (19)

Substituting (19) into (18) gives

En = −
1
a1

��

n=0

�nPn (µ1) ,

E� =

�
1 − µ21

a1

��

n=1

�n
�

�µ1
Pn (µ1) ,

(20)

where

�n = An,1
nKn+1/2 (ã1) − ã1Kn+3/2 (ã1)

ã1/21

+ ã1
��

l=0

Al,2
�bnl

�
ã1, R̃

�

�ã1
,

�n = An,1
Kn+1/2 (ã1)�

ã1
+

��

m=0

bnl
�
ã1, R̃

�
Al,2.

(21)

Due to the axial symmetry of the problem, only the z-
component of the force is non-zero leading to

(T1n)z = �0km

×
�
1
2

�
E2
n − E2

�

�
µ1 − EnE�

�
1 − µ21

�
. (22)

Combining (17), (20), and (22) a final expression for the
electrostatic force is given by

F1z = 4��0km
��

n=1

n
(2n − 1) (2n + 1)

× [�n−1 − (n − 1)�n−1] [�n + (n + 1)�n] . (23)

A complimentary expression for the electrostatic force acting
on sphere 2 can be obtained by simultaneous interchanging of
subscripts 1 and 2 in Eqs. (17)–(23). Stringent convergence
tests for the electrostatic force represented by an infinite series
of multipole moments have been reported by Lindgren et al.29
In the present evaluation of the force, expansion (23) was
truncated after the first 20 terms. However, more terms will
be required at very short separation for particles that are
dissimilar in size and charge.29

III. MODEL VERIFICATION

A. Interaction of small charged particles

Eq. (23) represents a general expression for the
electrostatic force acting between two charged dielectric
particles suspended in a solution which contains an electrolyte
in low concentration. However it is instructive to consider
special cases in order to reveal the physical meaning of low
order terms in Eq. (23). First consider the case of weak
screening and large inter-particle separation when the Debye
length and separation are much greater than particle size,
i.e., �ai � �R � 1 or ãi � R̃ � 1. This case corresponds to
(macro)ions that do not undergo charge exchange with the
solution. For small ai (or R), the modified Bessel functions
can be approximated as24

Kn+1/2 (ãi) �
�

�ãi
2

(2n − 1)!!
ãn+1i

,

Kn+1/2
�
R̃

�
=

�
�

2R̃
e−R̃

n�

l=0

(n + l)!
l! (n − l)!

�
2R̃

�l ,

In+1/2 (ãi) �
�

2ãi
�

ãni
(2n + 1)!! .

(24)

This yields

�n+1/2
�
ãi, R̃

�
=

�
�

2
ãni
R̃

e−R̃

(2n − 1)!!

×
n�

l=0

(n + l)!
l! (n − l)!

�
2R̃

�l . (25)

Approximations (24) and (25) make it possible to use the ratio
ai/R as an expansion parameter in Eq. (11) and to limit the
number of terms, nmax, in the expansion up to a certain number.
It is assumed that the charge distribution on the surface of
each sphere is uniform, i.e., � i =

Q i
4�a2i

. This means that the
only one non-zero term in Eq. (7) is

� i,n =
1

4��0
Qi

ã2i
��n,0. (26)

Next consider the two important cases of ion-ion interaction
and ion-molecule interaction, respectively, in an electrolyte
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solution, where account is taken of the first monopole term
(nmax = 1) and the monopole and dipole terms (nmax = 2) in
expansion (23).

1. Ion-ion interaction

Ion-ion interaction can be represented as two non-
polarizable charged spheres, and it corresponds to the
expansion of all infinite sums up to nmax = 1. The first term
in the expansion series for the electrostatic force in Eq. (23)
gives

F1z =
4��0km

3
�0 (�1 + 2�1) , (27)

where, with reference to Eqs. (21), (24), and (25), at nmax = 1

�0 = −
�

�

2
1
ã1

A0,1,

�1 = −A1,1

�
�

2
2
ã21

+ ã1A0,2

�
�

2
1 + R̃
R̃2

e−R̃,

�1 = A1,1

�
�

2
1
ã21

+ A0,2

�
�

2
ã1
1 + R̃
R̃2

e−R̃.

(28)

Here coefficients An, i are the solution of the linear system
(15), where with approximations (24) and (25) taken into
account,

A0, i �
1

4��0

�
2
�

Qi

km
�,

A1, i � −
1

4��0
ã3i

ki − km
ki + 2km

e−R̃
1 + R̃
R̃2

�
2
�

�

km
Q j .

(29)

Finally, using (28) and (29) in Eq. (27) an explicit expression
for the electrostatic force between two (macro)ions is obtained
as follows:

Fion−ion = −
Q1Q2

4��0kmR2 (1 + �R) e−�R

�− Q1Q2

4��0kmR2
(1 + �R) e−�(R−a1−a2)

1 + � (a1 + a2)
. (30)

Expression (30) contains only the first monopole term of
expansion (23), which corresponds to the shielded Coulomb
force between two finite-size ions of radii a1 and a2 in a
medium with permittivity km and Debye length �−1. The
presence of minus sign indicates that the force acting along
the z axis is repulsive, when Q1 has the same sign as Q2.

2. Ion-molecule interaction

Next consider the interaction between an ion and a non-
polar molecule. The ion is represented by a small charged
non-polarizable sphere (k1 = km), whereas the molecule is
introduced as a polarizable sphere with zero charge (Q2 = 0).
These assumptions mean that the monopole term in Eq. (23)
is zero, and in order to obtain a non-zero monopole-dipole
force nmax = 2. Expansion of (23) up to the second term yields
the following simple expression for the force:

F1z = 4��0km

×
�
1
3
�0 (�1 + 2�1) +

2
15

(�1 − �1) (�2 + 3�2)
�
. (31)

Here

�0 = −A0,1

�
�

2
1
ã1

,

�1 = −A1,1

�
�

2
2
ã21

+

�
�

2
ã1e−R̃

×
�
A0,2

�
1 + R̃

�

R̃2
+ A1,2

�
2 + 2R̃ + R̃2�

R̃3

�
,

�2 = −A2,1

�
�

2
9
ã31

+ A0,2

�
�

2
2ã21
R̃2

e−R̃,

�1 = A1,1

�
�

2
1
ã21

+

�
�

2
ã1e−R̃

×
�
A0,2

�
1 + R̃

�

R̃2
+ A1,2

�
2 + 2R̃ + R̃2�

R̃3

�
,

�2 = A2,1

�
�

2
3
ã31

+ A0,2

�
�

2
ã21
R̃3

�
1 + R̃

�
e−R̃.

(32)

Similar to the previous case, using approximations (28) and
(29) in the system (15) gives the following solution:

A0,1 �
�

2
�

Q1

4��0km
�, A0,2 �

ã32
3R̃

e−R̃
�

2
�

Q1

4��0km
�,

A1,2 � −
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(33)

From Eqs. (32) and (33) it follows that the second term in the
force expression (31) is zero, whereas the first term gives

Fion−molecule

=
Q2

1a
3
2

4��0kmR5 (1 + �R) e−2�R

×
�
− (�R)

2

3
+

k2 − km
k2 + 2km

�
2 (1 + �R) + (�R)2

��
. (34)

In the absence of screening (� = 0), Eq. (34) is reduced to

Fion−molecule = 2 (4��0km)
k2 − km
k2 + 2km

a32
Q2

1

(4��0km)2R5
. (35)

Eq. (35) is in agreement with an expression given by
Israelachvili30 for the force between a non-polarisable ion
and a neutral molecule, with the latter having a polarizability
of 4��0km

k2−km
k2+2km

a32 as defined by the Clausius-Mossotti
formula.31,32 Eq. (34) can be also obtained using the force
between a point charge and a dielectric microparticle.13 The
first term in Eq. (34) represents the electrolyte polarization
around the molecule due to its finite size, and the force
remains nonzero even in case k2 = km. The second term can
be reproduced exactly by derivation of the interaction energy
between a point charge and a dipole in ionized medium33

using the Clausius-Mossotti formula.
Note that in expressions (34) and (35) the effect of

shielding is included twice: a shielding factor e−2�R and the
dielectric constant for the medium appearing as k2m. This
dependence is derived from the origin of the electrostatic
force: first the screened charge on particle 1 induces a dipole

euse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.243.2.139 On: Tue, 23 Au
2016 15:55:25



moment on particle 2 via a polarisable medium; in turn, this
now screened dipole moment generates a second interaction
with particle 1 through the same medium.

B. Comparison with experiments

As a test of the above theory, comparisons have beenmade
with data taken from optical trap experiments on polymer
particles by Sainis et al.21 Experiments21 have been performed
on pairs of poly-methylmethacrylate (PMMA) spheres of
radius 600 nm and dielectric constant 2.6 held in an optical
trap in the presence of a nonpolar solvent (hexadecane) and
a charge control agent (AOT). The electrostatic force has
been measured for different molar concentrations of AOT
corresponding to different values of particle charge and
Debye length. Comparisons between the experimental data
and the force calculated using both Eq. (23) and DLVO theory
are shown in Fig. 2. The results show that at inter-particle
separations exceeding the Debye length the experimental
results are correctly described both by the present model
(Eq. (23)) and DLVO theory. However, a discrepancy between
DLVO theory and the proposed more accurate solution begins
to emerge at shorter separations. Polarization contributions

FIG. 2. Electrostatic force between two identical 600 nm PMMA particles
(k1= k2= 2.6) in hexadecane (km = 2.06) with AOT, measured in experi-
ments at different AOT concentrations. The force is approximated by the
present model and the electrostatic force from DLVO theory. Two additional
curves at k1= k2= 1 and k1= k2= 80 correspond to hypothetical cases of
whole particles filled with air and water, respectively.

to the electrostatic force (fully described in the proposed
model) are governed by a difference between the values of
the dielectric constants of the interacting particles and the
solvent. If the dielectric constants of the particles in the
Dufresne experiment21 were much greater than 2, it would
lead to an enhancement of polarization effects, and DLVO
theory would be even less accurate (see below).

Since no experimental data are currently available in the
region of small inter-particle separations, a detailed numerical
analysis has been performed in order to illustrate the interplay
between polarization and shielding effects. The total charge
density on a particle can be obtained using the boundary
condition for the electric field strength,

� i,full = �0

�������

��in, i

�ri

�����r i =a i

−
�

�
�out,i +�out,j

�

�ri

������r i =a i

�������
. (36)

Applying Eqs. (12) and (13) the following expression is
obtained to provide a numerical evaluation of the total charge
density:

� i,full = �0�
��
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����
�
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��
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−
�bnl

�
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�

�ãi

������

����
�

× Pn (µi) . (37)

Fig. 3 shows a numerical solution to Eq. (37) corresponding
to a 10 mM molar concentration of AOT (as used in Fig. 2(b))
at an inter-particle separation equal to the Debye length
(Fig. 3(a)) and at the point of contact (Fig. 3(b)), where there
is zero surface-to-surface separation between particles. When
the particles are separated by the Debye length, shielding
from the electrolyte does not allow the particles to influence
one another, and the surface charge distribution is almost
uniform; hence, DLVO theory works well in this region. At
zero separation reduction in the magnitude of the electrostatic
force due to polarization (relative to DLVO theory) amounts
to just 7%. For the experiments described in Fig. 2, there is
little difference between the dielectric constants of the colloid
particles and that of the solvent, and the magnitude of the
charge is not high enough to cause significant polarization.
In addition, the separation range studied does not include
inter-particle distances where short-range forces (e.g., the van
der Waals forces) dominate.

In order to further demonstrate the possible effects of
polarization, two additional curves have been plotted in
Fig. 2. The dashed-dotted curve denotes the electrostatic
force between two spheres of the same charge and size
as colloidal particles in the experiment21 but with greater
permittivity (k1 = k2 = 80). In this case, polarization effects
lead to a strongly non-uniform distribution of surface charge
(Fig. 3(c)) and a considerable reduction (37%) in electrostatic
force relative to the force between non-polarizable spheres.
The double dashed-dotted curve in Fig. 2 represents the
case of less polarizable spheres (k1 = k2 = 1), for which the
magnitude of the force at zero surface-to-surface separation is
24% greater than the electrostatic force predicted with DLVO
theory. Calculations using Eq. (37) show that an increase in
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FIG. 3. Total charge distribution on the surface of a 600 nm PMMA sphere in hexadecane with 10 mM of AON (a) at a center-to-center separation equal to
the Debye length for k1= k2= 2.6, (b) at zero surface-to-surface separation for k1= k2= 2.6, (c) at zero surface-to-surface separation for k1= k2= 80 and (d) at
zero surface-to-surface separation for k1= k2= 1.

the magnitude of the force is caused by positive charge
concentrated around the contact point (Fig. 3(d)). These
two cases show that taking into account polarization effects
can give a completely different character to the electrostatic
interaction.

C. Comparison with the non-shielded model

A further analysis of the current solution has been
undertaken in the limit of infinite Debye length (� = 0) in
order to compare results with the earlier methodology,14 where
the electrostatic force between particles was calculated in a
vacuum. The corresponding electrostatic force between two
spheres 1.25 nm in diameter, carrying charges of Q1 = −1e
and Q2 = −7e and with dielectric constants k1 = k2 = 20 has
been calculated and plotted in Fig. 4(a). Calculations of the
electrostatic force have also been performed for a finite value
of the Debye length of 2.5 nm (Fig. 4(b)), and these results
are compared with the non-shielded force14 multiplied by a
factor of (1 + �R) e−�R. As can be seen, the present model is in
excellent agreement with the methodology developed for two
polarizable spheres in a vacuum.14 The calculations shown in
Fig. 4(b) also reveal that the product of the force obtained
using the non-shielded medium and the factor (1 + �R) e−�R
gives a very good approximation for the interaction force in

an electrolyte. This result is not unlike predictions obtained
by DLVO theory, where the Coulomb force between two
ions is multiplied by the same factor. Shielding effects
become significant at separations greater than the Debye
length, where mutual polarization of the interacting particles
is negligible, whereas at short separations, polarization effects
dominate.

D. Van der Waals force and conclusive remarks

Thus far only the electrostatic part of DLVO theory
has been taken into account. However, interactions in
DLVO theory consist both of an electrostatic repulsion
and an attraction due to van der Waals forces. Since the
attraction between like-charged particles is already captured
by electrostatic model, it is useful to investigate if the van
der Waals force overlaps with electrostatic attraction. For this
purpose, calculations from Fig. 4(c) are compared with van
der Waals force between two colloidal particles, calculated as
follows:30

FvdW =
Aa
12s2

, (38)

where A � 10−19 J is the Hamaker constant, a is the particle
radius, and s = R − 2a is the surface-to-surface separation.
A comparison between the present model and DLVO theory
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FIG. 4. Calculated electrostatic force between two colloidal particles in (a)
vacuum, (b) and in electrolyte with �−1= 2.5 nm as a function of separation
R−a1−a2. In each case, a1= a2= 1.25 nm, k1= k2= 20, Q1=−1e, and
Q2=−7e. The force has been calculated using the full present model and
the approximation involving separately polarization and shielding terms. For
reference purposes, the Coulomb force (a) and the double-layer force from
DLVO theory (b) have also been plotted.

including the van der Waals force is shown in Fig. 5. It shows
that in the present model the van der Waals force overlaps
almost entirely with the attractive part of the electrostatic
force, whereas in DLVO theory it is the van der Waals force

FIG. 5. Calculated electrostatic and the van der Waals forces between two
colloidal particles in electrolyte �−1= 2.5 nm as a function of separation
R−a1−a2. The parameters of colloidal particles are the same as in Fig. 4.

that is responsible for attraction and the possible coalescence
of colloidal particles.

In conclusion, the electrostatic problem for two
polarizable colloidal particles in solution has been solved
for low concentration of electrolyte such that the Debye-
Hückel approximation is valid. The force is expressed as
an infinite series, and the monopole and dipole terms are
extracted to compare with literature expressions for ion-
ion and ion-molecule interactions. It is shown that when
the Debye length is much greater than the size of colloid
particles it is possible to approximate the force at large
distances by the shielding factor, whereas at short separations,
the methodology developed for a non-ionized medium is
sufficiently accurate. The presented methodology can be used
to interpret experimental data for colloids and/or solvents with
sufficiently different values of dielectric constant. It can also
be used to study colloidal particles of high permittivity in order
to obtain more accurate results for the electrostatic force at
short separation. Calculations using the present model reveal
particular cases where electrostatic attraction dominates over
the van der Waals force, which may be essential in the study
of coalescence processes.
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