Электромеханический нанотермометр, основанный на тепловых колебаниях слоев углеродной нанотрубки

© А.М. Попов, Ю.Е. Лозовик, Е. Бичутская*, Г.С. Иванченко**, Н.Г. Лебедев**, Е.К. Криворотов***

Институт спектроскопии Российской академии наук, Троицк, Московская обл., Россия * Department of Chemistry, University of Nottingham, Nottingham, U.K. ** Волгоградский государственный университет, Волгоград, Россия *** Московский государственный педагогический университет, Москва, Россия E-mail: popov@ttk.ru, lozovik@isan.troitsk.ru

(Поступила в Редакцию 11 марта 2008 г. В окончательной редакции 19 мая 2008 г.)

> Предложена новая концепция электромеханического нанотермометра. Измерения температуры осуществляются с помощью измерения проводимости наносистемы, которая сильно зависит от температуры в результате относительных тепловых колебаниях нанообъектов, составляющих наносистему. Возможность реализации предложенной концепции нанотермометра показана на примере двухслойных углеродных нанотрубок. Зависимость энергии межслойного взаимодействия от относительного смещения слоев нанотрубок рассчитана с помощью метода функционала плотности. Проводимость нанотрубок рассчитана в рамках двухзонной модели Хаббарда. Расчеты энергии взаимодействия слоев и проводимости использованы для оценки размеров нанотермометров, основанных на различных двухслойных углеродных нанотрубках. Показано, что рассмотренный нанотермометр может быть использован для измерения температуры в локализованных областях с размерами порядка сотен нанометров.

Работа поддержана грантами РФФИ № 08-02-90049-Бел, 08-02-00685 и 07-03-96604-а.

PACS: 73.63.Fg, 85.35.Kt

1. Введение

Интенсивное развитие нанотехнологии в последние десятилетия сделало возможным создания наноэлектромеханических систем (НЭМС), в которых элементами электрической цепи являются все меньшие нанообъекты, включая одиночные молекулы. Принципы работы ряда таких НЭМС основаны на изменении характеристик системы при изменении относительных положений нанообъектов в субнанометровом масштабе относительно других элементов электрической цепи [1]. Уникальные электронные свойства углеродных нанотрубок [2], а также возможность контролируемого с помощью атомносилового микроскопа [3,4] относительного движения слоев углеродных нанотрубок делает их перспективными для использования в НЭМС одновременно в качестве подвижных элементов и элементов электрической цепи. Предложен ряд НЭМС, основанных на взаимодействии и относительном движении слоев углеродных нанотрубок, а также проведены расчеты рабочих характеристик этих НЭМС: переменного нанорезистора [5,6], наносенсора напряжения [7], ячейки энергонезависимой памяти [8,9]. Более того, были изготовлены наномоторы, основанные на относительном вращении слоев углеродных нанотрубок [10,11].

В настоящей публикации мы предлагаем новую концепцию электромеханического нанотермометра. Работа предлагаемого нанотермометра основана на измерении проводимости системы нанообъектов в случае, когда эта проводимость существенным образом зависит от относительного положения нанообъектов в субнанометровом масштабе и, следовательно, изменяется с ростом температуры в результате тепловых колебаний этих нанообъектов. Возможность реализации данной концепции рассмотрена на примере электромеханического нанотермометра, основанного на (n, n)@(m, m)двухслойных углеродных нанотрубках (ДУНТ). Сделаны оценки изменения проводимости ДУНТ в результате относительных тепловых колебаний слоев. Расчет размеров нанотермометров, предназначенных для измерений температуры в различных условиях, показывает, что их размеры составляют всего лишь десятки нанометров.

Температурная зависимость проводимости системы с учетом вклада тепловых колебаний составляющих ее нанообъектов определяется следующим выражением:

$$G(T) = \frac{\int_{-\infty}^{\infty} G(\mathbf{q}, T) \exp(-U(\mathbf{q})/kT) d\mathbf{q}}{\int_{-\infty}^{\infty} \exp(-U(\mathbf{q})/kT) d\mathbf{q}},$$
 (1)

где $G(\mathbf{q}, T)$ — проводимость системы при фиксированном относительном положении нанообъектов, которое описывается координатами **q**, $U(\mathbf{q})$ — потенциальная энергия системы. Система может быть использована для создания нанотермометра, основанного на относительных тепловых колебаниях составляющих ее нанообъектов в случае, когда выполняются следующие условия.

1) Проводимость $G(\mathbf{q}, T)$ слабо зависит от температуры при фиксированном относительном положении нанообъектов (условие A).

2) Проводимость $G(\mathbf{q}, T)$ существенным образом зависит от координат \mathbf{q} (условие B).

3) Характерная амплитуда тепловых колебаний нанообъектов должна быть достаточно велика, такой, чтобы тепловые колебания вносили основной вклад в зависимость проводимости $G(\mathbf{q}, T)$ от температуры (условие C).

4) Характерная амплитуда тепловых колебаний нанообъектов должна быть достаточно мала для того, чтобы относительные смещения нанообъектов не привели к нарушению работы нанотермометра (условие *D*).

Кроме того, желательно, но не обязательно, чтобы минимум потенциальной энергии $U(\mathbf{q})$ системы, вблизи которого происходят относительные колебания нанообъектов, соответствовал экстремуму в зависимости проводимости системы от координат \mathbf{q} (условие E). В этом случае любые малые смщения нанообъектов от равновесного положения приведут к изменениям проводимости одного знака (либо к уменьшению, либо к увеличению проводимости), и, следовательно, вклад в изменение проводимости от тепловых колебаний, соответствующих различным смещениям, не будет компенсироваться. Отметим, что совпадение минимума $U(\mathbf{q})$ и экстремума $G(\mathbf{q})$ возможно, в частности, в том случае, когда это равновесное положение соответствует более высокой симметрии системы.

Согласно расчетам, проводимость ДУНТ существенным образом зависит от относительного положения их слоев [12,13]. Далее мы показываем, что все перечисленные условия могут быть выполнены для предложенной схемы нанотермометра, основанного на ДУНТ с нехиральными соизмеримыми слоями. Мы рассматриваем два случая относительного положения слоев ДУНТ.

1) Телескопическая система, в которой внутренний слой входит во внешний слой только на часть своей длины. При этом длина перекрытия слоев меньше, чем длина каждого из слоев.

2) Система с челноком, когда короткий слой (челнок) перекрывается с длинным слоем, внутренним или внешним, по всей своей длине. При этом длина перекрытия слоев равна длине короткого слоя.

Согласно расчетам, как для телескопической системы, так и для системы с челноком зависимость проводимости G(z) от относительного положения z слоев вдоль оси ДУНТ является периодической функцией с большей амплитудой колебаний величины проводимости [12,13]. Этот результат означает выполнение условия *А*. Для телескопической системы проводимость зависит также от длины перекрытия слоев [13]. Измерения температурной зависимости проводимости однослойных нанотрубок показывают, что их проводимость не зависит

Трусок показывают, что их проводимость не зависит ции *U* (*q* Физика твердого тела, 2009, том 51, вып. 6

от температуры для $T > 80 \,\mathrm{K}$ [14]. Слабая зависимость проводимости от температуры объясняется тем, что движение электронов в нанотрубках на мезоскопических расстояниях происходит в баллистическом режиме [15]. Расчеты, представленные в настоящей работе, показывают, что проводимость ДУНТ с фиксированным относительным положением слоев слабо зависит от температуры для T > 80 K. Эти результаты означают выполнение условия В. Относительное положение слоев изменяется в результате тепловых колебаний слоев. Следовательно, проводимость ДУНТ может существенно зависеть от температуры главным образом в результате относительных колебаний слоев. В настоящей работе зависимость энергии U взаимодействия слоев ДУНТ от относительного положения z слоев вдоль оси ДУНТ рассчитана с помощью метода функционала плотности. Эта зависимость использована для оценки возможностей выполнения условий C и D, а также для расчета минимальных размеров нанотермометров, основанных на ДУНТ с соизмеримыми нехиральными слоями, при которых относительная диффузия слоев ДУНТ не нарушает работу нанотермометра. Анализ симметрии ДУНТ с соизмеримыми нехиральными слоями показывает, что для них выполняется также дополнительное условие Е. Общая концепция нанотермометра, предложенная в настоящей работе, может стимулировать поиск других наносистем, которые могут быть использованы в качестве электромеханического нанотермометра.

В разделе 2 приведены результаты расчетов энергии взаимодействия слоев ДУНТ методом функционала плотности. В разделе 3 представлены расчеты проводимости ДУНТ с фиксированным положением слоев. В разделе 4 рассмотрены принципиальные схемы нанотермометров на основе ДУНТ; приведены оценки, которые показывают, что тепловые колебания слоев вносят основной вклад в проводимость нанотермометров, а также рассчитаны рабочие характеристики нанотермометров. В разделе 5 обсуждаются преимущества предложенных схем электромеханических нанотермометров по сравнению с нанотермометрами, основанными на тепловом расширении жидкости, и успехи в развитии методов нанотехнологии, необходимых для изготовления электромеханических нанотермометров на основе ДУНТ.

2. Расчет взаимодействия слоев нанотрубки

Энергия взаимодействия U двух соседних слоев ДУНТ зависит от координат, которые описывают относительное положение слоев: угла ϕ относительного вращения слоев вокруг оси нанотрубки и относительного смещения z слоев вдоль этой оси. Симметрия функции $U(\phi, z)$ однозначно определяется симметрией ДУНТ [16,17]. Как показывают расчеты энергии взаимодействия слоев и анализ симметрии ДУНТ, для функции $U(\phi, z)$ возможны два принципиально различных

случая. Для ДУНТ с несоизмеримыми слоями [5,6] или с соизмеримыми слоями, из которых хотя бы один слой хиральный [17-20], барьеры между минимумами энергии взаимодействия $U(\phi, z)$ слоев пренебрежимо малы (см. также обзор [21]). Поэтому в таких ДУНТ возможна относительная диффузия слоев даже при низких температурах, и, следовательно, они не могут быть использованы для создания электромеханического нанотермометра, основанного на относительных тепловых колебаниях слоев. Для ДУНТ с соизмеримыми нехиральными слоями ((n, n)@(m, m) и (n, 0)@(m, 0)) барьеры между минимумами энергии взаимодействия $U(\phi, z)$ слоев велики. В настоящей работе мы рассматриваем работу электромеханического нанотермометра на примере (n, n)@(m, m) ДУНТ. Для таких ДУНТ получено выражение для разложения энергии взаимодействия слоев в ряд Фурье [16]

$$U(\phi, z) = \sum_{M, K(\text{odd})=1}^{\infty} \alpha_K^M \cos\left(\frac{2\pi}{l_c} K z\right) \cos\left(\frac{nm}{N} M \phi\right) \sin^2\left(\frac{\pi nm}{2N^2}\right) + \sum_{M, K(\text{even})=0}^{\delta_c/2} \beta_K^M \cos\left(\frac{2\pi}{l_c} K z\right) \cos\left(\frac{nm}{N} M \phi\right), \quad (2)$$

где N — наибольший общий делитель n и m, l_c — длина единичной ячейки ДУНТ. Четные члены всегда присутствуют в разложении (2), а нечетные члены присутствуют в (2) только в случае, когда оба отношения, n/N и m/N, нечетны.

Амплитуды гармоник в разложении (2) экспоненциально спадают с увеличением номеров гармоник Mи K [17,18,22]. Поэтому энергия $U(\phi, z)$ взаимодействия слоев для ДУНТ с соизмеримыми нехиральными слоями может быть интерполирована только двумя первыми членами разложения (2)

$$U(\phi, z) = U_0 - \frac{\Delta U_{\phi}}{2} \cos\left(\frac{2\pi}{\delta_{\phi}}\phi\right) - \frac{\Delta U_z}{2} \cos\left(\frac{2\pi}{\delta_z}z\right), \quad (3)$$

где U_0 — средняя энергия взаимодействия слоев, ΔU_{ϕ} и ΔU_z — барьеры для относительного вращения слоев и их скольжения вдоль оси ДУНТ соответственно, $\delta_{\phi} = \pi N/nm$ и $\delta_z = l_c/2$ — периоды $U(\phi, z)$ для относительного вращения слоев и их относительного смещения вдоль оси ДУНТ соответственно. Полуэмпирические расчеты на примере нескольких десятков ДУНТ с соизмеримыми нехиральными слоями показывают, что энергия $U(\phi, z)$ может быть интерполирована выражением (3) с точностью около 1% [19].

Барьер ΔU_{ϕ} для относительного вращения слоев это барьер между эквивалентными минимумами $U(\phi, z)$, которые отстоят друг от друга на период δ_{ϕ} . Для большинства ДУНТ с соизмеримыми нехиральными слоями наибольший общий делитель *n* и *m* имеет значение N = 1 [19]. Для таких ДУНТ мал период δ_{ϕ} и, согласно расчетам, мал барьер ΔU_{ϕ} для относительного вращения слоев (менее 0.005 meV/atom для расчетов методом функционала плотности [20] и менее 10^{-11} meV/atom для расчетов с использованием полуэмпирических потенциалов [19]). Существенный барьер ΔU_{ϕ} имеют только ДУНТ (5, 5)@(10, 10) и (9, 0)@(18, 0) [7,17,19], для которых N = 5 и 9 соответственно. Для ДУНТ с N = 1зависимостью энергии взаимодействия слоев $U(\phi, z)$ от угла ϕ можно пренебречь, и эта энергия приближенно определяется выражением

$$U(z) = U_0 - \frac{\Delta U_z}{2} \cos\left(\frac{2\pi}{\delta_z}\right). \tag{4}$$

Выражение (4) используется в разделе 4 для оценок вклада относительных тепловых колебаний слоев ДУНТ в зависимость проводимости нанотермометра от температуры. В настоящей работе мы проверяем адекватность выражения (4) с помощью расчетов методом функционала плотности на примере (6, 6)@(11, 11) ДУНТ.

Энергия взаимодействия слоев ДУНТ рассчитана с помощью метода функционала плотности в приближении локальной плотности с использованием программы AIMPRO [23]. При квантово-механическом описании каждого атома углерода в качестве псевдоволновых функций используются 5 функций Гаусса, которые расположены в центре атома и определены суммой сферических гармоник. Максимальный угловой момент, учитываемый в разложении экспонент функций Гаусса, l = 1 (т.е. учитываются *d*-орбитали включительно), и только экспоненты с наибольший и наименьшей величиной коэффициента сжимаемости разложены до углового момента l = 1 (т.е. включают лишь *s*- и *p*-орбитали). Зона Бриллюэна описана с помощью 18 к-точек в направлении главной оси нанотрубки. В этой работе использовались псевдопотенциал Бачелета, Хамана и Шлутера [24] и функционал, описывающий обменное взаимодействие электронов и их корреляцию [25]. Элементарная ячейка (6, 6)@(11, 11) ДУНТ содержит 68 атомов углерода. Структура каждого слоя была оптимизирована отдельно. При расчете энергии взаимодействия слоев структура слоев была фиксирована. Точность расчетов полной энергии ДУНТ определяется выбором способа оптимизации системы и в данных рассчетах достигает величины $1 \mu eV/atom$.

Хорошо известно, что стандартный метод функционала плотности непригоден для описания слабых ван-дерваальсовых и дисперсионных взаимодействий, а именно эти взаимодействия и определяют физическую природу взаимодействия соседних слоев графита и углеродных нанотрубок. При изучении свойств наноструктур со структурой графитовых слоев метод расчета должен учитывать и сильное взаимодействие между атомами углерода внутри слоя, и слабое взаимодействие между слоями. Достичь удовлетворительных результатов с помощью метода функционала плотности можно, например, модифицируя функционал плотности. Однако такой подход представляет собой серьезную и трудоемкую квантово-механическую проблему. В наших расчетах мы не модифицируем функционал плотности,

а оптимизируем базисный набор (функции Гаусса) таким образом, чтобы воспроизвести с хорошей точностью не только энергетические, но и упругие свойства графита. Полученные с помощью оптимизированного базисного набора [26] энергия взаимодействия между слоями графита 35 meV/atom, а также коэффициент упругости $C_{44} = 4.20$ GPa, отвечающий относительному сдвигу слоев графита, находятся в отличном согласии с экспериментальными значениями этих величин: $35 \pm 10 \text{ meV/atom}$ [27] и $5.05 \pm 0.35 \text{ GPa}$ [28] соответственно. Отметим, что расчеты с помощью данного метода дают значения энергии взаимодействия слоев в пределах 23-25 meV/atom для ряда ДУНТ с расстоянием между слоями 3.4 Å, которое соответствует многослойным углеродным нанотрубкам. Эти значения энергии находятся в отличном соответствии с экспериментальными данными 23-33 meV/atom для многослойных нанотрубок [4].

Энергия взаимодействия слоев (6, 6)@(11, 11) ДУНТ рассчитана для пяти различных значений относительного смещения z слоев вдоль оси ДУНТ (включая относительное положение слоев, соответствующее минимуму энергии их взаимодействия) при фиксированном угле ϕ относительного вращения слоев вокруг оси. Рассчитанная зависимость энергии взаимодействия слоев U(z), которая представлена на рис. 1, показывает, что выражение (4) адекватно в пределах точности расчетов.

Отметим, что выражения (2)–(4) справедливы для любых физических величин, зависящих от относительного положения нехиральных соизмеримых слоев ДУНТ, в частности для проводимости $G(\phi, z)$. Это означает, что обе функции $U(\phi, z)$ и $G(\phi, z)$ имеют совпадающие экстремумы и периоды δ_{ϕ} и δ_{z} . Таким образом, для ДУНТ с соизмеримыми нехиральными слоями выполняется дополнительное условие *E*.

Рис. 1. Зависимость энергии U взаимодействия слоев (6, 6)@(11, 11) ДУНТ (в meV на атом внешнего слоя) от относительного смещения z слоев вдоль оси нанотрубки. Смещение z выражено в единицах периода δ_z функции U(z). Рассчитанные значения энергии показаны точками, сплошной линией показана интерполяция энергии с помощью выражения (4). Энергия взаимодействия и относительное смещение слоев отсчитываются от минимума энергии взаимодействия (т. е. U(0) = 0).

3. Расчет проводимости двухслойных нанотрубок

В настоящем разделе мы рассматриваем температурные зависимости проводимости (n, n)@(m, m) ДУНТ, на которых может быть основан нанотермометр, при фиксированном относительном положении слоев. Однослойные нанотрубки указанного типа в отдельности обладают металлической проводимостью [2], поэтому следует ожидать, что для температурной зависимости проводимости ДУНТ также будет обнаружена металлическая проводимость. Однако при этом не исключена возможность проявления квантовых эффектов в некоторых интервалах температур, что в свою очередь может привести к фазовым переходам типа металлолупроводник.

Для моделирования электронной структуры использована двухзонная модель Хаббарда, модифицированная для учета перескока электронов между слоями ДУНТ. Гамильтониан модели применительно к ДУНТ со слоями *A* и *B* можно записать в следующем виде [29]:

$$\begin{split} \hat{H} &= -\sum_{j,\Delta,\sigma} t^a_{\Delta} (a^+_{j\sigma} a_{j+\Delta,\sigma} + a^+_{j-\Delta,\sigma} a_{j\sigma}) - \mu^a \sum_{j,\sigma} a^+_{j\sigma} a_{j\sigma} \\ &+ U \sum_j a^+_{j\sigma} a_{j\sigma} a^+_{j,-\sigma} a_{j,-\sigma} - \sum_{j,\Delta,\sigma} t^b_{\Delta} (b^+_{j\sigma} b_{j+\Delta,\sigma} + b^+_{j+\Delta,\sigma} b_{j\sigma}) \\ &- \mu^b \sum_{j,\sigma} b^+_{j\sigma} b_{j\sigma} + U \sum_j b^+_{j\sigma} b_{j\sigma} b^+_{j,-\sigma} b_{j,-\sigma} \\ &- \sum_{j,\xi,\sigma} t^{ab}_{\xi} (a^+_{j\sigma} b_{j+\xi,\sigma} + b^+_{j+\xi,\sigma} a_{j\sigma}), \end{split}$$
(5)

где $t^a_{\Delta}, t^b_{\Delta}$ и t^{ab}_{ξ} — интегралы перескока электрона атомами слоя A, атомами слоя B и между слоями ДУНТ соответственно; μ^a и μ^b — химические потенциалы слоев A и B соответственно; U — энергия кулоновского взаимодействия электронов, находящихся на одном атоме, $a^+_{j\sigma}, a_{j\sigma}, b^+_{j\sigma}, b_{j\sigma}$ — операторы рождения и уничтожения электрона с координатами \mathbf{r}_j и спином σ для слоев A и B соответственно, Δ — расстояние между соседними атомами углерода в соответствующих слоях ДУНТ, ξ — расстояние между слоями. Для описания взаимного расположения атомов двух слоев ДУНТ использовалась упаковка, в которой половина атомов одного слоя находится непосредственно над атомами другого слоя, а вторая половина атомов находится над центрами шестиугольников, образованных структурой атомов соседнего слоя.

Тензор статической удельной проводимости в терминах функций Грина имеет вид [30,31]

$$G_{\alpha\beta} = \frac{i\pi V}{kT} \langle\!\langle j_{\alpha} \,|\, j_{\beta} \rangle\!\rangle, \tag{6}$$

где V — объем ДУНТ, $\langle\!\langle j_{\alpha} | j_{\beta} \rangle\!\rangle$ — функция Грина для вектора плотности тока $\hat{\mathbf{j}}$. Векторы поляризации $\hat{\mathbf{D}}$ и

плотности тока $\hat{\mathbf{j}}$ имеют вид

$$\hat{\mathbf{D}} = \frac{e}{V} \sum_{j\sigma} \left(\mathbf{r}_j a_{j\sigma}^+ a_{j\sigma} + \mathbf{r}_j b_{j\sigma}^+ b_{j\sigma} \right), \tag{7}$$

$$\hat{\mathbf{j}} = \frac{ie}{V} \sum_{k\sigma} \left[\left(\mathbf{v}^a a^+_{k\sigma} a_{k\sigma} + \mathbf{v}^b b^+_{k\sigma} b_{k\sigma} \right) + \mathbf{v}^{ab} (b^+_{k\sigma} a_{k\sigma} + a^+_{k\sigma} b_{k\sigma}) \right],$$
(8)

где $\mathbf{v}^{a}, \mathbf{v}^{b}$ и \mathbf{v}^{ab} — скорости электрона в зонах a, b и ab соответственно,

$$\mathbf{v}^{a} = \frac{1}{\hbar} \frac{\partial \varepsilon^{a}(\mathbf{k})}{\partial \mathbf{k}}, \quad \mathbf{v}^{b} = \frac{1}{\hbar} \frac{\partial \varepsilon^{b}(\mathbf{k})}{\partial \mathbf{k}}, \quad \mathbf{v}^{ab} = \frac{1}{\hbar} \frac{\partial \varepsilon^{ab}(\mathbf{k})}{\partial \mathbf{k}}, \tag{9}$$

где ε^a , ε^b , и ε^{ab} — дисперсионные соотношения для электронов в зонах *a*, *b* и *ab* соответственно, **k** волновой вектор вдоль оси ДУНТ.

Таким образом, задача расчета тензора проводимости сводится к нахождению двухчастичных функций Грина. Подробности методики расчета изотропной проводимости как функции температуры рассмотрены в работе [32]. В [32] было обнаружено, что температурная зависимость проводимости G(T) для всех рассмотренных ДУНТ имеет характерное поведение, присущее проводникам, другими словами, их проводимость монотонно уменьшается с увеличением температуры. Следует отметить, что этот результат был ожидаемым, так как по отдельности каждый из слоев ДУНТ обладает именно металлической проводимостью. При этом обнаружен эффект насыщения проводимости в области температур от 50 до 160 К, где зависимость проводимости G(T) становится более пологой и образуется плато. Появление плато объясняется более сложным зонным строением ДУНТ по сравнению с однослойными углеродными нанотрубками [32]. Однако в работе [32] не рассмотрены эффекты, связанные с конечной длиной слоев ДУНТ. В настоящей публикации мы используем данную методику для расчета зависимостей проводимости G(T) для ряда (n, n)@(m.m)ДУНТ с конечной длиной внешнего слоя, на которых может быть основан нанотермометр. На рис. 2 представлены зависимости G(T) для (4, 4)@(10, 10) ДУНТ с бесконечным внутренним слоем и различными длинами внешнего слоя. Эти зависимости позволяют сделать следующие выводы: 1) аналогично случаю ДУНТ с бесконечным внешним слоем обнаружено плато в зависимости проводимости G(T) в области температур $T = 50 - 160 \,\mathrm{K}; \, 2)$ проводимость ДУНТ слабо изменяется при изменении длины внешнего слоя на порядки величины. Эти выводы справедливы для всех рассмотренных ДУНТ. Зависимости проводимости G(T) для различных (n, n)@(m, m) ДУНТ сравниваются на рис. 3. Отметим, что зависимости G(T) для (5, 5)@(10, 10)и (5, 5)@(11, 11) ДУНТ, а также для (6, 6)@(11, 11) и (6, 6)@(12, 12) ДУНТ почти совпадают. Таким обра-

Рис. 2. Температурная зависимость проводимости (4, 4)@(10, 10) ДУНТ для различных длин *L* внешнего слоя (в длинах l_c элементарных ячеек ДУНТ). $L = 10l_c$ (*I*), $30l_c$ (2), $50l_c$ (3), $100l_c$ (4) и $1000l_c$ (5).

Рис. 3. Температурная зависимость проводимости различных ДУНТ с длиной внешнего слоя в 100 элементарных ячеек. I - (4, 4)@(10, 10), 2 - (5, 5)@(10, 10), 3 - (5, 5)@(11, 11), 4 - (6, 6)@(11, 11), 5 - (6, 6)@(12, 12), 6 - (7, 7)@(12, 12).

зом, рис. З показывает, что проводимость (n, n)@(m, m)ДУНТ с конечной длиной внешнего слоя определяется радиусом внутреннего слоя и слабо зависит от расстояния между слоями. Эти результаты согласуются с результатами для бесконечных (n, n)@(m, m) ДУНТ, для которых проводимость G(T) увеличивается с увеличением радиуса ДУНТ [32].

Проведенные расчеты показывают, что при фиксированном относительном положении слоев проводимость G(T) для (n, n)@(m, m) ДУНТ с конечной длиной внешнего слоя слабо зависит от температуры для T > 50 К, причем в области температур T = 50-160 К зависимость G(T) имеет плато. Таким образом, мы показали, что для рассмотренной системы выполняется условие A для возможности использовать систему в качестве нанотермометра.

4. Расчет характеристик нанотермометра

Схемы нанотермометров для системы с челноком с подвижным внешним слоем и телескопической системы с подвижным внутренним слоем показаны на рис. 4. Возможны также схемы нанотермометров для системы с челноком с подвижным внутренним слоем и телескопической системы с подвижным внутренним слоем.

Вследствие симметрии ДУНТ с соизмеримыми нехиральными слоями экстремумы функций U(z) и G(z, T) совпадают. Как показано в разделе 2, энергия взаимодействия слоев U(z) может быть интерполирована вблизи минимума следующим выражением:

$$U(z') = U_1 + \frac{\pi \Delta U_z}{\delta_z^2} z'^2,$$
 (10)

где U_1 — минимум энергии взаимодействия слоев и z' — смещение подвижного слоя относительно положения, соответствующего этому минимуму. Зависимость проводимости от относительного положения слоев может быть интерполирована для малых величин z' выражением

$$G(z') = G_1(T)(1 + \gamma z'^2), \tag{11}$$

где G_1 — значение проводимости ДУНТ, соответствующее минимуму энергии взаимодействия слоев (т. е. основному состоянию системы).

Подставив (10) и (11) в (1), получим следующее выражение для зависимости проводимости нанотермометра от температуры:

$$G(T) = G_1(T) \left(1 + \frac{\gamma \delta_z^2 kT}{\pi \Delta U_z} \right) = G_1(T) (1 + H\Delta T). \quad (12)$$

Условие успешной работы нанотермометра, означающее, что тепловые колебания слоев вносят основной вклад в зависимость проводимости от температуры, будет выполнено, если

$$H\Delta T \gg \frac{\Delta G_1(T)}{\langle G_1(T) \rangle},$$
 (13)

где $\Delta G_1(T)$ — разница между максимальным и минимальным значениями проводимости системы в основном состоянии для рабочего диапазона температур ΔT нанотермометра; $\langle G_1(T) \rangle$ — средняя проводимость системы в основном состоянии в диапазоне температур ΔT . С помощью рис. 2 и 3 получим оценку

$$\frac{\Delta G_1(T)}{\langle G_1(T) \rangle} \sim 1 \tag{14}$$

для рабочего диапазона температур нанотермометра $\Delta T = 250 \, {\rm K}$ от 50 до 300 K.

Для того чтобы оценить возможность выполнения условия G для нанотермометра на основе (6, 6)@(11, 11) ДУНТ, используем результаты расчета энергии взаимодействия слоев, представленные в разделе 2, и результаты расчета проводимости этой ДУНТ из работы [12]. Мы интерполировали зависимости проводимости (6, 6)@(11, 11) ДУНТ от относительного положения слоев для телескопической системы, представленные на рис. З в работе [12], с помощью выражения (11) и получили следующие оценки коэффициента γ : $\gamma = 855 \pm 124 \,\text{\AA}^{-2}$ для длины перекрытия слоев в 10 элементарных ячеек ДУНТ и $\gamma = 21 \pm 12 \text{ Å}^{-2}$ для длины перектытия слоев в 250 ячеек. В соответствии с расчетами из первых принципов (см. раздел 2) барьер для относительного движения слоев вдоль оси ДУНТ составляет $\Delta U_z = 78.4 \,\mathrm{meV}$ и $\Delta U_z = 1.96 \,\mathrm{eV}$ для длины перекрытия слоев 10 и 250 элементарных ячеек соответственно. Для рабочего диапазона температур нанотермометра $\Delta T = 250 \,\mathrm{K}$ величина произведения $H\Delta T$ принимает значения 117 ± 17 и 0.43 ± 0.10 для длины перекрытия слоев 10 и 250 элементарных ячеек соответственно. Таким образом, проведенные оценки демонстрируют выполнение условия С для небольших перекрытий слоев (десятки длин элементарных ячеек или несколько нанометров).

Сделаем оценки минимальных размеров электромеханических нанотермометров, основанных на ДУНТ с нехиральными соизмеримыми слоями, для которых возможно выполнение условия *D*. Условие *D* означает, что амплитуда тепловых колебаний короткого подвижного слоя достаточно мала, чтобы не нарушить работу нанотермометра. Очевидно, что чем короче подвижный слой, тем больше амплитуда тепловых колебаний этого слоя. С увеличением амплитуды тепловых колебаний возможна диффузия короткого подвижного слоя вдоль фиксированного длинного слоя. Такая диффузия является нежелательным процессом, который может нарушить работу нанотермометра.

Рис. 4. Схемы электромеханических нанотермометров на основе ДУНТ: телескопический нанотермометр с подвижным внутренним слоем (*a*) и нанотермометр с подвижным челно-ком из внешнего слоя (*b*). *1* — подвижный слой, *2* — фиксированный слой, *3* — электроды.

Нанотрубка	$L_{\rm es}, {\rm nm}$	$t = 10^{-6} \mathrm{s}$		t = 100лет	
		L, nm	L_{nt} , nm	L, nm	L_{nt} , nm
$T = 100 \mathrm{K}$					
(4, 4)@(10, 10)	2.9 ± 1.1	15.5 ± 7.0	21.4 ± 7.0	120 ± 45	125 ± 45
(5, 5)@(11, 11)	2.0 ± 0.5	12.3 ± 3.5	16.3 ± 3.5	82 ± 21	85 ± 21
(6, 6)@(12, 12)	1.4 ± 0.3	10.1 ± 2.0	12.9 ± 2.0	60 ± 11	63 ± 11
(5, 5)@(10, 10)	0.36 ± 0.02	4.2 ± 0.2	4.9 ± 0.2	17.3 ± 0.8	18.0 ± 0.8
(6, 6)@(11, 11)	0.27 ± 0.01	3.2 ± 0.1	3.8 ± 0.1	12.8 ± 0.5	13.3 ± 0.5
(7, 7)@(12, 12)	0.19 ± 0.01	2.58 ± 0.07	2.96 ± 0.07	9.7 ± 0.3	10.0 ± 0.3
$T = 300 \mathrm{K}$					
(4, 4)@(10, 10)	9.0 ± 3.5	27 ± 15	45 ± 15	340 ± 130	360 ± 130
(5, 5) $@(11, 11)$	5.9 ± 1.5	25 ± 8	36 ± 8	240 ± 60	245 ± 60
(6, 6)@(12, 12)	4.2 ± 0.8	21 ± 5	29 ± 5	170 ± 30	180 ± 30
(5, 5)@(10, 10)	1.1 ± 0.05	10.2 ± 0.5	12.4 ± 0.5	49.5 ± 2.5	51.5 ± 2.5
(6.6)@(11, 11)	0.8 ± 0.02	7.9 ± 0.3	9.5 ± 0.3	36.6 ± 1.3	38.2 ± 1.3
(7, 7)@(12, 12)	0.6 ± 0.2	6.4 ± 0.2	7.6 ± 0.2	27.8 ± 0.7	29.0 ± 0.7
			-	•	

Характерные размеры нанотермометров с подвижным слоем — челноком — на основе (n, n)@(m, m) ДУНТ $(L_{es}$ — величина зазора между челноком и электродом, L — длина челнока, L_{nt} — полная длина нанотермометра между электродами, t — время работы нанотермометра, T — рабочая температура нанотермометра)

Рассмотрим такую диффузию на примере системы с челноком (рис. 4, b). Диффузия короткого подвижного слоя (челнока 1) вдоль фиксированного слоя 2 не будет нарушать работу нанотермометра только во случае, когда смещение d челнока в результате диффузии за время t работы нанотермометра будет меньше, чем расстояние L_{es} между челноком и электродом 3

$$d = \sqrt{2Dt} < L_{\rm es},\tag{15}$$

где *D* — коэффициент диффузии для движения челнока вдоль фиксированного слоя. Коэффициент диффузии для относительного движения слоев ДУНТ определяется следующим выражением [20]:

$$D = A \exp\left(-\frac{BL}{T}\right), \quad A = \pi \delta_z \sqrt{\frac{\Delta U_z}{2m}}, \quad B = \frac{\Delta U_z N_a}{l_m k},$$
(16)

где m — масса атома углерода, N_a — число атомов в элементарной ячейке подвижного слоя, l_m — длина элементарной ячейки подвижного слоя, L — длина подвижного слоя. Подставляя (16) в (15), получим выражения для минимальной длины челнока

$$L = \frac{T}{B} \ln\left(\frac{2At}{L_{\rm es}^2}\right) \tag{17}$$

и полной длины нанотермометра между электродами

$$L_{nt} = \frac{T}{B} \ln\left(\frac{2At}{L_{es}^2}\right) + 2L_{es}.$$
 (18)

Полная длина нанотермометра между электродами минимальна при $L_{es} = T/B$. Это условие для минимума длины не зависит от времени работы нанотермометра.

Выражения (17) и (18) использованы нами для расчета полной длины нанотермометра и длин конструктивных элементов этой НЭМС. Для (6, 6)@(11, 11) ДУНТ использовано значение барьера ΔU_z , полученное в настоящей работе экстраполяцией зависимости U(z) с помощью выражения (4). Для остальных рассмотренных ДУНТ взяты значения барьера ΔU_z , рассчитанные нами с помощью метода функционала плотности в работе [33] как разницы между значениями энергии для относительных положений слоев, соответствующих экстремумам зависимости U(z). Рассмотрена работа нанотермометра в двух режимах: импульсное измерение температуры за время 10^{-6} s и работа без сбоев в течение 10 лет. Результаты расчета представлены в таблице.

5. Заключение

В настоящей статье рассмотрена работа электромеханического нанотермометра, основанного на взаимодействии слоев двуслойных углеродных нанотрубок. Показано, что нанотермометр может быть использован для измерения температуры в пространственно локализованных областях с размерами сотни нанометров. Так как измерение температуры в рассмотренном нанотермометре основано на измерении проводимости, нанотермометр может быть калиборован с использованием термопары. В этом случае измерение температуры с помощью нанотермометра может иметь в принципе такую же точность, как и при измерении с помощью термопары.

Отметим, что электромеханический нанотермометр, рассмотренный в настоящей работе, принципиально отличается от нанотермометра, основанного на нанотрубке, заполненной галлием [34,35]. В этом нанотермометре измерение температуры основано на измерении длины

колонки жидкого галлия внутри углеродной нанотрубки, которая растет с температурой в результате теплового расширения (при этом длина нанотрубки около 10 µm). Для измерения длины колонки галлия необходимы как предварительная калибровка, так и последующая идентификация нанотермометра с помощью просвечивающей электронной микроскопии, что делает проблематичным измерение температуры непосредственно во время эксперимента. Электромеханический нанотермометр не имеет указанного недостатка и может быть использован, в частности, в качестве составной части НЭМС для измерения температуры непосредственно во время их работы. Рассматривался также термометр с размером около 1 µm, основанный на тупнельном переходе сверхпроводник-диэлектрик-металл, который предназначен для измерения температур < 1 К [36]. Это существенным образом отличается от рабочего диапазона температур нанотермометра, предложенного в настоящей работе.

Обсудим возможные применения электромеханического нанотермометра на основе нанотрубки. Такие нанотермометры могут быть использованы в медицинских нанороботах [37] для определения температуры индивидуальных клеток. Ряд нанотермометров, интегрированных в микросхему, может быть использован для контроля распределения температуры внутри микросхемы.

В настоящее время достигнут значительный прогресс в методах нанотехнологии, делающих возможным изготовление и работу НЭМС на основе углеродных нанотрубок (см. также обзор [21]): разработана методика измерения проводимости индивидуальных нанотрубок. Возможны перемещение одностенных нанотрубок и относительное движение слоев многостенных нанотрубок с помощью наноманипулятора, удаление с нанотрубок закрывающих концы колпачков, нарезка слоев нанотрубок на части желаемой длины и уменьшение длины нанотрубок. С помощью методики, основанной на омическом нагреве нанотрубок, получены нанотрубки с коротким внешним слоем (челноком). Разработаны методы однозначного определения индексов хиральности однослойных нанотрубок и слоев двухслойных нанотрубок. Разрабатываются методы получения нанотрубок с определенными индексами хиральности. Все это позволяет надеяться на то, что рассмотренный в настоящей работе нанотермометр может быть изготовлен с использованием нанотехнологий ближайшего будущего.

Список литературы

- H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Aliviscatos, P.L. McEuen. Nature 404, 57 (2000).
- [2] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus. Appl. Phys. Lett. 60, 2204 (1992).
- [3] J. Cumings, A. Zettl. Science 289, 602 (2000).
- [4] A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl. Phys. Rev. Lett. 97, 025 501 (2006).
- [5] Yu.E. Lozovik, A.V. Minogin, A.M. Popov. Phys. Lett. A 313, 112 (2003).

- [6] Ю.Е. Лозовик, А.В. Миногин, А.М. Попов. Письма в ЖЭТФ 77, 759 (2003).
- [7] E. Bichoutskaia, M.I. Heggie, Yu.E. Lozovik, A.M. Popov. Fullerenes, Nanotubes Carbon Nanostruct. 14, 131 (2000).
- [8] L. Maslov. Nanotechnology 17, 2475 (2006).
- [9] A.M. Popov, E. Bichoutskaia, Yu.E. Lozovik, A.S. Kulish. Phys. Status Solidi A 204, 1911 (2007).
- [10] A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl. Nature 424, 408 (2003).
- [11] B. Bourlon, D.C. Glatti, L. Forro, A. Bachtold. Nano Lett. 4, 709 (2004).
- [12] I.M. Grace, S.W. Bailey, C.J. Lambert. Phys. Rev. B 70, 153 405 (2004).
- [13] M.A. Tunney, N.R. Cooper. Phys. Rev. B 74, 075 406 (2006).
- [14] B. Gao, Y.F. Chen, M.S. Fuhrer, D.C. Glattli, A. Bachtold. Phys. Rev. Lett. 95, 196 802 (2005).
- [15] Carbon Nanotubes: synthesis, structure, properties and applications / Eds M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Springer-Verlag, Berlin (2001).
- [16] M. Damnjanović, I. Milošević, T. Vuković, R. Sredanović. Phys. Rev. B 60, 2728 (1999).
- [17] T. Vuković, M. Damnjavonić, I. Milošević. Physica E 16, 259 (2003).
- [18] M. Damnjanović, T. Vuković, I. Milošević. Eur. Phys. J. B 25, 131 (2002).
- [19] A.V. Balikov, Yu.E. Lozovik, A.G. Nikolaev, A.M. Popov. Chem. Phys. Lett. 385, 72 (2004).
- [20] E. Bichoutskaia, A.M. Popov, A. El-Barbary, M.I. Heggie, Yu.E. Lozovik. Phys. Rev. B 71, 113 403 (2005).
- [21] Ю.Е. Лозовик, А.М. Попов. УФН 177, 786 (2007).
- [22] M. Damnjanović, E. Dobardzić, I. Milošević, T. Vuković, B. Nikolić. New J. Phys. 5, 148.1 (2003).
- [23] P.R. Briddon, R. Jones. Phys. Status Solidi B 217, 131 (2000).
- [24] G.B. Bachelet, D.R. Hamann, M. Schlüter. Phys. Rev. B 26, 4199 (1982).
- [25] J.P. Perdew, Y. Wang. Phys. Rev. B 45, 13 244 (1992).
- [26] R.H. Telling, M.I. Heggie. Phil. Mag. Lett. 83, 411 (2003).
- [27] L.X. Benedict, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Lonie, V.H. Crespi. Chem. Phys. Lett. 286, 490 (1998).
- [28] C.S.G. Cousins, M.I. Heggie. Phys. Rev. B 67, 024109 (2003).
- [29] Ю.А. Изюмов, М.И. Кацнельсон, Ю.Н. Скрябин. Магнетизм коллективизированных электронов. Физматлит, М. (1994). 368 с.
- [30] С.В. Тябликов. Методы квантовой теории магнетизма. Наука, М. (1975). 528 с.
- [31] А.А. Абрикосов, Л.П. Горьков, И.Е. Дзялошинский. Методы квантовой теории поля в статистической физике. Добросвет, М. (1998). 514 с.
- [32] Г.С. Иванченко, Н.Г. Лебедев. ФТТ 49, 183 (2007).
- [33] E. Bichoutskaia, A.M. Popov, M.I. Heggie, Yu.E. Lozovik. Phys. Rev. B 73, 045 435 (2006).
- [34] Y. Gao, Y. Bando. Nature 415, 599 (2002).
- [35] Y. Gao, Y. Bando, Z. Liu, D. Golberg, H. Nakanishi. Appl. Phys. Lett. 83, 2913 (2003).
- [36] D.R. Schnidt, C.R. Yung, A.N. Cleland. Appl. Phys. Lett. 83, 1002 (2003).
- [37] A.M. Popov, Yu.E. Lozovik, S. Fiorito, L'Hocine Yahia. Int. J. Nanomedicine 2, 361 (2007).