

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

N-doping enabled defect-engineering of MoS₂ for enhanced and selective adsorption of CO₂: A DFT approach

Francis M. Enujekwu^{a,b,1}, Yue Zhang^c, Collins I. Ezeh^a, Haitao Zhao^d, Mengxia Xu^{a,b}, Elena Besley^e, Michael W. George^{a,e}, Nicholas A. Besley^e, Hainam Do^{a,b}, Tao Wu^{a,b,*}

^a Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China

^b Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo

^c Department of Civil Engineering, Qingdao University of Technology, 266033 Qingdao, China

^d Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

^e School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

ARTICLE INFO

Keywords: Carbon dioxide Molybdenum disulfide Carbon capture Density functional theory Computational analysis

ABSTRACT

A density functional theory study was conducted to analyze CO_2 adsorption on defective and non-defective MoS_2 surfaces with or without nitrogen doping. The $MoS_2_1V_S$ and $MoS_2_1V_{Mo}_3N_S$ were found exhibiting outstanding adsorption activity and stability, which is linked to an enhanced electron charge on the surface in the presence of vacancies and N species that alters strength and type of interactions with CO_2 molecules. Results showed the dissociative chemisorption of CO_2 on the $MoS_2_1V_S$ and a significantly enhanced physisorption of CO_2 on the $MoS_2_1V_{Mo}_3N_S$, which displays an adsorption energy of -1.818 eV compared with -0.139 eV of the pristine MoS_2 surface. Meanwhile, the $MoS_2_1V_S$ exhibits an excellent selective adsorption of CO_2 over N_2 and H_2O , with the highest adsorption ratio of 5.1 and 3.5, respectively. Partial dissociation of CO_2 over the $MoS_2_1V_S$ is also observed and attributed to increased covalent attractions at the vacant site, while the improved CO_2 physisorption over the $MoS_2_1V_{Mo}_3N_S$ is attributed to the enhanced electrostatic interactions at the vacancy site due to N doping. These findings are confirmed by the computed vibrational frequencies of CO_2 bound on these surfaces. The N-doping enabled defect engineering of MoS_2 is proved effective and enhanced selective adsorption of CO_2 .

1. Introduction

 CO_2 capture is essential to mitigate global climate change caused by anthropogenic CO_2 emission [1]. Existing CO_2 capture technologies exhibit a high range of cost estimates, which depends on process type, separation technology, CO_2 transport technique and storage site [2]. Hence, research is needed to develop highly effective capture materials that can overcome the cost implications of existing technologies.

Monolayer molybdenum disulphide (MoS_2) is one of the twodimensional (2D) transition-metal dichalcogenides (TMD) that have been the focus of considerable interest over the past two decades [3] due to much success in applications in electronics, energy storage, sensing, and photoluminescence [4]. As in the well-studied cases of graphene and graphene oxide (GO) [5–9], the high surface to volume ratio of mono and few layers TMD can be exploited for gas sensing applications. Detection of CO_2 using highly reduced GO flakes has been shown to be effective as the low adsorption strength of CO_2 on GO flakes surface results in easy desorption of gas molecules without light assistance [10]. Unlike graphene which has a zero band gap, MOS_2 is a semiconductor with a band gap ranging from 1.2 eV (indirect) in bulk [11] to 1.9 eV (direct) in monolayer [12]. This change in band gap gives rise to the novel photoluminescence and electronic properties of the MOS_2 monolayer and might unlock the potential of this material as gas sensor and as an alternative material for CO_2 capture.

Calculations based on density functional theory (DFT), show that pollutant gases such as NO₂, NO and SO₂, can strongly interact with MoS₂ surfaces owing to the charge transfer mechanism between gas molecules and MoS₂, which explains its gas sensing properties [13,14].

¹ F.M.E. and Y.Z. contributed equally.

https://doi.org/10.1016/j.apsusc.2020.148556

Received 11 July 2020; Received in revised form 13 November 2020; Accepted 19 November 2020 Available online 2 December 2020 0169-4332/© 2020 Elsevier B.V. All rights reserved.

^{315100,} China

^{*} Corresponding author at: Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China. *E-mail address:* tao.wu@nottingham.edu.cn (T. Wu).

DFT calculations also show that MoS_2 adsorbs H_2 molecules, which prefer to bind with the S atoms of the monolayer thus enhancing its conductivity [15]. For non-polar gas molecules, like CO_2 and CH_4 , the perfect MoS_2 surface cannot offer strong adsorbing sites, and the presence of defects, especially S vacancies, is essential to result in the possibility for these molecules to adsorb on MoS_2 [16]. Another important feature is the large surface area created when the bulk is thinned into layers, with the surface area of exfoliated MoS_2 flakes having a high density of edges which are potential active sites for electrochemical applications in sensing and energy storage, in particular for CO_2 storage [3,4]. As the edge sites of MoS_2 flakes are more reactive than the surface, orientation of the flakes can be used to tune their response to target specific gases.

To date, numerous strategies have been employed for the fine-tuning of the physical and chemical properties of MoS_2 and other TMD materials [11,17–19]. Both experimental and theoretical studies have been used to investigate point defects in the MoS_2 monolayer [20,21]. These studies have revealed that point defects are usually more reactive than the sites present on a perfect surface. The single sulfur vacancy (S-vacancy) point defect is more easily formed than anti-site defects [20] and the edge is usually less stable and more prone to doping [22]. The results showed that the defective MoS_2 surface improved the adsorption strength and catalytic activity of the MoS₂ layer [21,22].

An alternative way to improve CO_2 uptake capacity is to create basic or redox-active surface sites by incorporating nitrogen into the surface framework, which manipulates its conductivity and charge density [11,23,24]. This promotes the transfer of electrons between the surface and CO_2 , therefore enhancing the energy storage activities [25]. A recent DFT study proposed that nitrogen doping in monolayer MOS_2 leads to a high electronic state density around the N and Mo atoms and therefore enhancing its electronic conductivity [11]. The synergistic effect of molecular doping and vacancy defects may further enhance the CO_2 adsorption activity of MOS_2 . However, despite the numerous investigations on molecules interacting with pristine [26,27] and defective [21,22] monolayer MOS_2 , there has not been an extensive study on CO_2 adsorption on N atom doped MOS_2 , which has the potential to pave the way towards developing an engineered MOS_2 nanosheets with sufficient active sites for enhanced CO_2 adsorption capacity.

In this study, we present a fundamental understanding of exploiting nitrogen doping (N-doping) for the preparation of defect-rich MoS_2 with enhanced CO_2 adsorption capacity is. The first-principles DFT study was carried out to investigate CO_2 adsorption on defect-free monolayer MoS_2 as well as MoS_2 surface with different types of vacancies (single and double vacancies) with and without N-doping. The influence of different

Fig. 1. Relaxed local geometric configurations of MoS_2 (a) pristine (b) one S atom substituted with a N atom (c) two S atoms substituted with two N atoms (d) three S atoms substituted with three N atoms (e) one Mo atom substituted with one N atom (f) Mo and S atoms substituted with two N atoms (g) MoS_2 with 1 S-vacancy (h) one S atom substituted with one N atom in MoS_2 with 1 S-vacancy (i) three neighboring S atoms in a unit cell substituted with three N atoms in 1 Mo-vacancy defect and (j) 1Mo and 1S vacancy-defected MoS_2 . Color code: Mo, blue, S, yellow, and N, green. The lines define the lengths given in Å. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

types of vacancies and level of N-doping on the structural and electronic properties of the MoS_2 monolayer was investigated. In addition, how Ndoping and various types of vacancies govern the electron transfer rate as well as the efficacy for CO_2 adsorption were explored. Infrared (IR) spectroscopy was also performed to probe the structure of the surface adsorbates. The adsorption of nitrogen and water molecules was investigated to ascertain the selective adsorption of CO_2 .

2. Computational methods

A periodic (4 × 4 × 1) supercell of the MoS₂ monolayer (PMoS₂) containing 48 atoms (16 Mo atoms and 32 S atoms) is used as an initial computational model. The lateral value of the box is 12.76 Å × 12.76 Å [28]. A large vacuum layer of 15 Å in the direction to the interface is used as an isolated slab boundary condition to avoid interlayer interactions. The positions of all the atoms in the supercell were fully relaxed during structural optimization for all the supercells with or without defects. In order to simulate the vacancy defect MoS₂ systems, one or two adjacent Mo or S atoms were removed to create a stable single or double vacancy-defected MoS₂ (Fig. 1) consistent with the literature [29]. Also, Mo or S atoms were substituted with N atom (s) to simulate N-doped MoS₂ defect complex systems as shown in Fig. 1. Additional details can be found in the Supporting Information Section 1 and Section 2.

The simulations use spin-polarized DFT-D2 calculations using Grimme's [30] method, as implemented in Vienna ab initio simulation package (VASP) [31,32]. This approach adds a semi-empirical pairwise force field to the conventional first-principles plane-wave DFT calculations. This takes dispersion interactions into consideration, and it accurately describes the interactions for adsorption systems [33]. The exchange-correlation potential is treated with the generalized gradient approximation (GGA) functional of Perdew, Burke and Ernzerhof (PBE) [34]. A 500 eV cutoff energy was used for the plane-wave basis set. Γcenter meshes of 5x5x1 and 9x9x1 Monkhorst-Pack [35] k-point are used for sampling the Brillouin zone during geometry optimization and density of state calculations, respectively. The Gaussian smearing width was set to 0.2 eV. For geometry relaxation, we used the method of conjugate gradient energy minimization with convergence criterion for the energy of 10^{-6} eV between two consecutive steps, and the maximum Hellmann-Feynman force exerting on each atom less than 0.01 eV/Å upon ionic relaxation. In order to test for cutoff energy and k-point grid is required convergence, two denser Monkhorst-Pack grids (6x6x1 and 7x7x1) and a cutoff energy (600 and 700 eV) were tested for all the simulated systems. The results were compared for several selected parameters. It was found that the results from 5x5x1 Monkhorst-Pack grids were very similar to those for the 6x6x1 and 7x7x1 Monkhorst-Pack grids. The total energy was converged to <10 meV. Hence, we believe that 5x5x1 Monkhorst-Pack is dense enough for 4x4x1 MoS2 monolayer and that 500 eV cutoff energy is suitable for the plane-wave basis set. Using Bader charge analysis, charge transfer between molecules and the substrate is obtained [36]. All calculations are performed under the same relaxation criteria.

The frequencies of the phonon modes for the physiosorbed and dissociated state have been calculated through finite difference method using a displacement of 0.015, and by fixing all of the atoms of the MoS_2 monolayer. This approach has shown to introduce little or no error in the computed frequencies and intensities of the adsorbed molecules and results in significant reduction in computational cost [37]. The vibrational modes of the molecules in gas phase were also computed to compare with the different adsorption configurations.

The binding energy of the N atom(s) on MoS₂ surface, E_{bN} , isosurfaces of the spin charge density difference for the defective MoS₂ monolayer, $\Delta \rho_s$, adsorption energy (E_{AE}), charge density difference of the adsorption systems, $\Delta \rho_{df}$, were calculated using Equations (S1-S3), (S4), (S5) and (S6), respectively, as described in Supporting Information

(S1.3).

3. Results and discussion

In total, 10 possible surface configurations consisting of nondefective and defective periodic ($4 \times 4 \times 1$) supercell of the MoS₂ monolayer were investigated (see Fig. 1). The corresponding stable localized configurations for N doping and vacancies are shown in Fig. 1. The formation of these configurations are detailed in the Supporting Information (Section S1.2).

3.1. Properties of N-doped defective and non-defective MoS₂ monolayer

Prior to evaluating the adsorption of CO₂, the relative properties (atomic, electronic and magnetic) of the simulated surface configurations are discussed. To reveal the effects of N atoms and vacancy defects on the structural properties of the adsorbent, the results of the N substitutional and N-doped vacancy (Mo and S) defect systems are compared with that of the optimized MoS₂ monolayer. The results of the structural geometry of the optimized MoS₂ monolayer is presented in the Supporting Information (Table S1), which agrees well with the experimental data [38] and previous theoretical values [26,39]. The simulation results of the single (MoS₂1V_S) and double vacancy (MoS₂1V_{Mo}1V_S) defect systems are presented in the Supporting Information (Table S2). The results agree well with previous studies [28,29]. The binding energy of N atom(s) on MoS₂ surface, E_{bN} , was calculated using Equations (S1-S3) as described in Supporting Information (S1.3).

Table 1 presents the binding energy and bond length of N-doped monolayer MoS_2 at different sites using the DFT calculations illustrated in Fig. 1. The binding energies of all N-doped MoS_2 surfaces are negative (exothermic process), which suggests that it is viable for N atoms to be filled into the MoS_2 surfaces. Among the N-doped MoS_2 monolayers, the $MoS_2_1N_{Mo_2}1N_S$ displayed the highest binding energy of -11.49 eV upon optimization. Similarly, the $MoS_2_1N_{Mo_2}1N_S$ due binding energy (-8.07 eV), but lower than that of $MoS_2_1N_{Mo_2}1N_S$ due

Table 1

Model	E _{bN} , eV	E _g a, eV	Q _N ^b , e	M _N ^c , μ _B	d _{Mo-} s ^d , Å	d _{N-} Mo ^e , Å	h _{N-} s ^f , Å
$MoS_2_1N_S$	-0.88	1.71	-0.81	0.23 (0.83)	2.45	2.02	2.69
MoS ₂ _2N _S	-1.63	1.67	-1.56	0.00 (*NM)	2.44	2.02	2.68
MoS ₂ _3N _S	-2.47	1.62	-2.23	0.00 (NM)	2.43	2.04	2.66
$MoS_2_1N_{Mo}$	-8.07	1.18	-0.84	0.34 (0.82)	2.39	1.78	3.11
$\rm MoS_{2_}1N_{Mo_}1N_{S}$	-11.49	0.94	-1.72	0.00 (NM)	2.35	1.92	2.74
$MoS_2_1V_{S_1}N_S$	-1.92	0.90	-0.95	0.17 (0.61)	2.38	2.01	2.70
$MoS_{2_}1V_{Mo_}3N_{S}$	-8.05	0.91	-2.21	0.20 (2.20)	2.43	1.93	2.63

^a E_g is the calculated direct energy band gap

 b $\overset{b}{Q_N}$ stands for total charge obtained by the N atoms. Negative charge means charge was transferred from MoS₂ surface atoms to the N atom, and vice versa. c M_{N} , is the net magnetic moment of the N dopant atoms. The values in

brackets are the net magnet moment of the entire structure.

 $^d\,\,d_{\text{Mo-S}}$ is the average distance between Mo and S atoms close to the defect sites.

 $^{\rm e}~d_{\rm N\cdot Mo_{\rm o}}$ is the average distance between the N atom and its neighboring Mo atoms.

 $^{\rm f}$ h_{N-S}, is the height of the N atom with respect to the S plane (that is, S atom of the S-layer opposite to the layer doped with N atom).

 * NM, means nonmagnetic state, which shows that the investigated model exhibits a nonmagnetic state (i.e. total magnetic moment, $\mu = 0 \mu_{B}$).

to fewer N atoms. The reason is that the replacement of Mo and/or S atoms in the MoS₂ sheet by N atoms ($MoS_2 1N_{Mo_-} 1N_S$ and $MoS_2 1N_{Mo}$), further creates a local reconstruction on the S layer in adjacent site (Fig. 1) in an energetically favorable manner during optimization (see S3.1 in the Supporting Information).

From Table 1, it can be observed that the average N-Mo bond length shows a small increase with the number of N dopants for both vacant and non-vacant systems. Specifically, the MoS₂₋₁V_{s-1}N_S system exhibited a N-Mo bond length of 2.01 Å, which is similar to that of nondefective configurations despite containing an S vacancy. This can be related to the characteristic stretching of the Mo-Mo distance within the vicinity of the S vacant site, which offers a cushioning effect on the N—Mo bond by the vacancy site upon optimization. On the contrary, $h_{\rm N}$ s (the height of the nitrogen atom with respect to the S atoms) decreases with increasing numbers of N dopants for the systems. MoS2 1NMo displayed the largest h_{N-S} value of approx. 3.11 Å, which is close to the interlayer S-S distance of pristine MoS2 (3.11 Å). This can be associated with the shortest d_{N-Mo} for $MoS_2_1N_{Mo}$ when compared to the other structures. Overall, our results showed that the vacancy defects (single or double) created in MoS2 do not induce molecular structure reconstruction as witnessed in the case of carbon vacancy in graphene [40]. The comprehensive details of the binding energy and bond lengths is given in Supporting Information (Section S3.1).

The electron transfer between the dopant and the surface was also investigated by examining the charge densities using Bader charge analysis [36]. As can be seen from Table 1, the values of Q_N are negative for all the considered surfaces, which indicates that the transfer of electrons occurred from the surficial atoms to the N atom. As discussed in the Supporting Information (S3.2), this is in line with the electronegative nature of the N atom [41]. The Pauling electronegativity of both Mo and S atoms of the surface are 2.16 and 2.58, respectively, which are smaller than 3.04 for the N atom. Hence, charge transfers from the Mo and S atoms to N dopant, which becomes more negatively charged. The charge transfer from the surface to the N dopant increased with the number of N atoms present in the structure and, there is charge transfer from the 1 S-vacancy sites to the N dopant. In addition, the results from Table 1 show that $MOS_2_1N_S$, $MOS_2_1N_S$, $MOS_2_1N_M$

and MoS₂₋1V_{Mo-}3N_S exhibit a magnetic moment. This is because of the fewer number of N atoms in MoS₂₋1N_S and the vacancy in MoS₂₋1N_S, MoS₂₋1N_{Mo} and MoS₂₋1V_{Mo-}3N_S. In contrast, MoS₂₋2N_S, MoS₂₋3N_S and MoS₂₋1N_{Mo} and MoS₂₋1V_{Mo-}3N_S. In contrast, MoS₂₋2N_S, MoS₂₋3N_S and MoS₂₋1N_{Mo}-1N_S (with higher number of N atoms) exhibit a nonmagnetic moment despite having double the amount of charge transfer that could enable significant disturbance and spin polarization. It is also observed that the excess charge transfer around the N dopants is evenly distributed among the N atoms. This even distribution reduces the effect of spin polarization on the surface, and thus, do not induce a magnetic moment. The distribution of the magnetic moment can be clearly seen from Fig. 2, which is the isosurfaces of the spin charge density difference for the defective MoS₂ monolayer, $\Delta \rho_s$, and was obtained using Equation (S4) as explained in the Supporting Information (S1.3). More details on charge transfer and magnetic properties are discussed in the Supporting Information (Section S3.2).

Finally, to provide more insight into the electronic properties of these sites, the total (TDOS) and partial (PDOS) density of state were calculated. Fig. 3 presents the characteristic TDOS and PDOS of the Ndoped vacancy free and N-doped vacancy containing MoS₂ monolayers. N is expected to act as a source of p-type doping for the monolayer MoS₂ when it substitutes for S, due to that N have one p valence electron less than S. This leads to the generation of a hole in the valence band as shown in the DOS plots (Fig. 3). The calculated direct energy band gap (E_g) for each structure is given in Table 1. From Table 1, the band gaps become narrower as the number of N dopants increases for the N-doped vacancy-free systems. The narrow state of the band gap compared with the pristine structure (1.79 eV) indicates a shift in the Fermi level is mainly due to the impurity state introduced by N atoms. The impurity states mainly come from the hybridization between the 2p orbitals of N and the 4d orbitals of its neighboring Mo. The electron transfer due to the presence of nitrogen as a p-type dopant and the band bending induced by the formation of Mo-N covalent bond at the top-most layer, as well as the preferential sulfur removal, contribute to a band shift, which is commonly found in N doped MoS₂ [11,42]. Furthermore, it is observed that much narrower band gaps are obtained in N doped single S or Mo vacancy defect complexes. This can be attributed to the combined effects of the impurity state introduced by N atom as a p-type

Fig. 2. Top and side views of isosurfaces of spin density difference for the defect surfaces with isosurface taken as ± 0.005 e/Bohr³. The light blue and pink colors represent areas with increase and decrease of electron density, respectively. The color codes for Mo, S and N atoms are the same as in Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) The TDOS of the defect-free and N doped monolayer MoS₂. (b) The PDOS projected on the 3p orbitals of N dopants and the 3p and 4d orbitals of their neighboring S and Mo atoms, respectively. The positive and negative values of DOS illustrate the spin-up and spin-down states, respectively. Green, orange and blue lines represent 4d, 2p and 3p orbitals, respectively. The Fermi level is represented by the vertical dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

dopant and the defect states as a result of unsaturated S or Mo atoms near the single S or Mo vacancy, respectively [29]. A detailed explanation of the defect states in non-doped single S or Mo vacancy defect is provided in Section S2 of the Supporting Information.

3.2. CO₂ adsorption on the considered MoS₂ surfaces

To investigate the adsorption of CO_2 on the pristine or defect (vacancy or N-substitutional doping) monolayer MOS_2 , the adsorption energy (E_{AE}) is calculated using Equation (S5) as described in the Supporting Information (S1.3). The molecular height is defined as the distance between the carbon atom of the CO_2 molecule and a reference atom of the MoS_2 surface in the basal plane in the z-direction (i.e. N atom for N doped MoS_2 surface and average z plane of S atoms, for nondoped MoS_2 surface). It should be pointed out that top (Mo or S), hollow or bridge sites of the MoS_2 monolayer were not emphasized in our calculations. The reason for this is that a theoretical study has shown that MoS_2 is a poor adsorbent for CO_2 irrespective of these sites, but defective MoS_2 is a good adsorbent, hence, our focus is to further enhance the adsorption by N doping [19]. In this regard, the CO_2 molecule was initially placed at a height of 2.5 Å from S or Mo at the vacancy site and doped N atom(s) for vacancy defect and N-doped monolayer MoS_2 , respectively. Different orientations of the CO_2 molecule and lateral positions with respect to XYZ axes of the MoS_2 supercell were also considered in order to obtain the most stable CO_2 adsorption configurations.

Based on the test calculations (Table S2), only the most stable relaxed adsorption geometric structures and results are presented and discussed here, while the others can be found in the Supporting Information (Section S5). Fig. 4 presents the schematic structure of the most stable CO₂ adsorption configurations for the pristine or defect (vacancy or N-substitutional doping) monolayer MoS₂. Except for the MoS₂_1V_S, all other models exhibited a stable CO₂ adsorption when the CO₂ molecule is oriented in parallel with the surface of the model. It is worth mentioning that $MoS_2_1N_{Mo}$ is not a stable adsorption configuration for CO₂ molecule due to a high positive adsorption energy in all the considered configurations (Table S3), therefore is not be discussed

further.

Further elaboration of the adsorption properties at 2.5 Å initial molecular height is given in Table 2. Table 2 presents the equilibrium molecular distance between the adsorbate and the substrate yielded by optimization (h_{mol-surf}), along with the corresponding adsorption energy (EAE) and characteristic parameters for the considered models such as the amount of charge transfer (from Bader charge analysis) between MoS₂ and CO₂ molecule (Q_{CO2}), and MoS₂ and nitrogen atom of the dopant (Q_N), characteristic surficial bond lengths (d_{Mo-S}, d_{N-Mo} and h_{N-S},) average bond lengths (l) and bond angles (θ) of CO₂ after adsorption, and change in CO_2 bond angles ($\Delta \theta$). $\Delta \theta$ is the difference between the bond angle experimental value (180°) [43] and the value obtained from the structural optimization. For example, a stable CO₂ adsorption on the MoS₂ 1N_S surface displayed an equilibrium height of 3.085 Å with an adsorption energy of -0.197 eV. All equilibrium heights obtained from the models are lower than that obtained in PMoS₂ (3.456 Å) with an adsorption energy of 0.139 eV. As shown in Table 2, $MoS_2_1V_{Mo}_3N_S$ (3.313 Å) gives highest adsorption energy of 1.818 eV, which is 13 times higher than that of PMoS₂. Also, CO₂ is considered to be physisorbed on all the surfaces based on the large separation heights, except for MoS₂ 1V₅ surface, where CO₂ molecule was found to undergo a dissociative adsorption. The detailed discussion on the dissociation is given in the subsequent section.

Fig. 4. The schematic structure of the most stable adsorption configurations for CO_2 molecule adsorbed on the pristine and defect (vacancy or N-substitutional doping) monolayer MoS_2 from top (upper panel) and side (lower panel) views. The full descriptions of a-i have been given in Fig. 1. The color codes for Mo, S and N atoms are the same as in Fig. 1, while, O and C atoms are shown in red and grey, respectively. The lines define the equilibrium molecular height between the central carbon atom of the CO_2 molecule and a reference atom of the MoS_2 surface in the basal plane in the z-direction yielded by optimization (i.e. N atom for N doped MoS_2 surface and average z plane of S atoms, for non-doped MoS_2 surface given in Å.

Table 2

Summary of calculated results for adsorption of CO_2 on most stable configurations of different surfaces at 2.5 A initial molecular	ır hei	igh	١t
---	--------	-----	----

Model	E _{AE} , eV	Q _{CO2} ^a , e	Q _N ^b , e	^c M _N , μ _B	$h_{mol-surf}$ ^d , Å	d _{Mo-S} ^e , Å	d _{N-Mo} ^f , Å	h _{N-S} ^g , Å	l, Å	θ, °	$\Delta \theta$, $^{\circ}$
PMoS ₂	-0.139	-0.020	-	_	3.456	2.412	_	-	1.177	179.698	0.302
MoS ₂ 1N _S	-0.197	-0.017	-0.958	0.213 (0.840)	3.085	2.443	2.019	2.694	1.177	178.713	1.287
MoS ₂ _2N _S	-0.200	-0.017	-1.894	0.000 (* NM)	3.136	2.439	2.012	2.681	1.177	178.712	1.288
MoS2_3Ns	-0.211	-0.015	-2.814	0.000 (NM)	3.233	2.365	2.016	2.655	1.176	178.710	1.290
MoS ₂ 1N _{Mo} 1N _S	-0.186	-0.019	-1.702	0.000 (NM)	3.160	2.351	1.926	2.754	1.176	178.720	1.280
MoS ₂ 1V*s	-0.908	^h –1.015 (0.109)	-	-	ⁱ 3.003	2.421	-	-	1.144	-	-
MoS2_VS_1NS	-0.196	-0.019	-0.962	0.089 (0.544)	3.116	2.384	2.016	2.699	1.176	178.975	1.025
MoS2_1V _{Mo} _3N _S	-1.818	-0.012	-2.557	0.027 (0.256)	3.313	2.365	2.046	[‡] 1.776	1.177	178.581	1.419
$MoS_{2_}1V_{Mo_}1V_{S}$	-0.252	-0.027	-	-	3.376	2.334	-	-	1.179	179.369	0.631

 a Q_{CO2}.

^b Q_N, are total charge obtained by the CO₂ molecule and N atom of the dopant respectively. Negative charge means charge is transfered from MoS₂ surface atoms to the atoms of CO₂ molecule, and vice versa.

 c M_N, is the net magnetic moment of the N dopant atoms. The values in brackets are the net magnet moment of the entire structure.

^d h_{mol-surf,} is the equilibrium molecular height, the equilibrium molecular height is the height between the central carbon atom of the adsorbed CO₂ molecule and a reference atom of the MoS₂ surface in the basal plane in the z-direction yielded by optimization (That is, N atom, for N doped MoS₂ surface and average z plane of top S-layer atom, for non-doped MoS₂ surface).

 $^{\rm e}~d_{Mo-S}$ is the average distance between Mo and S atoms close to the defect sites nearest to the adsorbed CO₂.

 $^{\rm f}$ d_{N-Mo,} is the average distance between the N atom and its neighboring Mo atoms nearest to the adsorbed CO₂.

^g h_{N-S}, is the height of the N atom with respect to the S plane (that is, S atom of the S-layer opposite to the layer doped with N atom).

^{*} MoS₂.1V_S model, however might not be a stable system for sustainable CO₂ adsorption because of the strong tendency of one O atom of CO₂ to embed in the MoS₂ surface, thus creating Mo-O-Mo layer at the S vacancy site when the CO₂ molecule is oriented vertically leading to the formation of CO gas, therefore, the adsorption energy presented there is rather CO₂ dissociation energy.

^h -1.015 (0.109) e, is the charge gained (lost) by the formed CO gas (O atom that bonded with the surface).

 $^{\rm i}$ 3.003 Å, is the distance between C atom of the formed CO gas and O atom that bonded with the surface.

 ‡ 1.776 Å, is the average N-S triple bond length, that is, when CO₂ adsorbed on MoS_{2.}1V_{Mo_3}N_S surface, triple bonds were formed between opposite dangling N and S atoms in the Mo vacancy.*NM, means nonmagnetic state, which shows that the investigated model exhibits a nonmagnetic state (i.e. total magnetic moment, $\mu = 0 \mu_B$).

3.3. CO₂ adsorption on defective MoS₂ monolayer

For MoS₂ 1V_S, an improved adsorption efficiency of CO₂ is obtained with an adsorption energy of -0.908 eV. This energy is much stronger than those obtained for CO₂ interaction with some MOFs or carbonbased nanomaterials [44,45]. As discussed earlier, only the MoS₂ 1V₅ model exhibited the dissociation of CO₂ to yield lattice-embedded oxygen and CO molecule that desorb from the surface at the considered molecular height (Fig. 4f). The dissociative chemisorption of CO_2 on the single S vacancy defect can be associated with the perpendicular orientation of CO2 molecule and the increased covalent attractions. The covalent attraction was observed to be higher around the vacancy defect sites due to the three dangling Mo atoms. The O atom of the CO2 molecule possesses excess negative charge due to its higher electronegativity when compared to the central C atom. As a result, the O atom is strongly attracted to the more positively charged vacant site, due to the enhanced charge transfer from the excess positively charged dangling Mo atoms ($Q_{Mo} = 0.07$ e) to the single S-vacancy defect sites (Table S2).

This explains why the CO₂ molecule tends to distance itself from the vicinity of single S vacancy defect of MoS2 monolayer when linear CO2 is placed horizontally along the z-axis, since the positively charged central C atom of CO₂ is not electrostatically attracted to the positively charged dangling Mo atoms of single S vacancy defect. As a result, the large electropositive central C atom may make it difficult for CO2 to grab electrons from the MoS₂ 1V_S defect site and thus prevent the strong interaction between them. As shown in Table S3, the repulsive interaction between CO2 and MoS2 1VS when linear CO2 molecule is horizontally oriented along the z-axis is reflected in the positive adsorption energy. This is one reason why pristine MoS₂ surface does not strongly interact with CO₂ molecule as the layer of negatively charged S atoms shields the inner positively charged Mo atoms. Subsequently, a lesser interaction is observed on the pristine surface when CO2 is perpendicularly oriented to the surface. The calculated energy of -0.908 eV is far larger than the value reported in Ref. [21] for CO₂ adsorption on the single SV defect site. This reported study suggested that CO2 only physisorbed on MoS₂1V_S. Part of the discrepancy can be attributed to the perpendicularly orientated CO_2 molecule and the effect of lateral interaction between the O of CO_2 pointing towards the S vacant site and the surface.

Furthermore, as shown in Fig. 4f, the lattice-embedded oxygen and three dangling Mo atoms are linked by three newly formed O—Mo covalent bonds, whose average length is 2.081 Å, shorter than the Mo-S bond length. The formation of these bonds leads to the elongation of the surrounding Mo-S bonds from 2.412 to 2.421 Å as shown in Table 2. Bader Charge analysis shows 0.109 e charge transferred from the lattice-embedded oxygen to the detached CO, which obtained 1.015 e total electron charge. The distance between C atom of the detached CO molecule and the lattice-embedded O atom is 3.003 Å. This value is smaller than 3.500 Å reported in Ref. [26] for CO physisorption on perfect MoS₂ surface, which indicates a strong physisorption state. The C—O bond length is calculated to be 1.114 Å, which is in excellent agreement with the experimental value of 1.13 Å [43].

Pertaining to MoS₂1V_{Mo}1Vs, the adsorption of CO₂ resulted in a moderate adsorption energy of -0.252 eV, which corresponds to a physisorption process. CO2 physisorption is therefore energetically favored in $MoS_2_1V_{Mo}_1Vs$ by -0.113 eV over the $PMoS_2$ and notably lesser by -0.656 eV when compared to the dissociative adsorption on MoS_{2-1VS}. The large difference in the adsorption energies between $MoS_{2-}1V_S$ and $MoS_{2-}1V_{Mo-}1V_S$ can be attributed to the missing Mo atom in MoS₂ 1V_{Mo} 1Vs surface, which reduces the electrostatic and covalent components of the interaction between the O atom of CO2 and the vacant site. The adsorption distance of MoS2_1VMo_1Vs is 3.376 Å, which is also shorter than that obtained for PMoS₂, and the CO₂ molecule adopts a tilted orientation, with O atom pointing to the MoS defect as shown in Fig. 4i. The bond length of the physisorbed CO₂ slightly increased while the bond angle decreased by $\sim 0.6^{\circ}$ with respect to the linear CO₂ in gas phase (Table 2). From the Bader charge analysis, 0.027 e charge is transferred from MoS2_1VM0_1Vs surface to CO2 molecule, which is comparable to that obtained with the prefect surface. Thus, this proves that CO2 molecule gives a moderate interaction with MoS2_1V- $_{Mo}$ 1Vs defect. The calculated adsorption energy of -0.252 eV is close to the value of -20.5 kJ/mol (-0.213 eV) reported by Ref. [19].

To analyze the electronic properties of the defect structures upon

CO₂ adsorption, the density of state (DOS) and charge density difference were calculated. The charge density difference, $\Delta \rho_{df}$, is defined in the Supporting Information (S1.3) using Equation (S6). Fig. 5 presents the TDOS and PDOS of the adsorption system. The PDOS were projected on the relevant orbitals: p and d orbitals of the respective S and Mo atoms near the MoS and S vacancy sites, p orbital of N dopants, and the s and p orbitals of the CO and CO2 molecules, and lattice embedded O atom. As can be seen in Fig. 5b, when CO₂ physisorbed on the MoS vacancy site $(MoS_{2}1V_{Mo}1V_{S})$, there is an orbital coupling between the p orbital of CO2 and the d orbital of the Mo atom, which is in agreement with a previous study [19]. There are no significant changes in the DOS spectra of either valence or conduction band of MoS2_1VMo_1VS upon CO2 adsorption just like in the perfect surface (Fig. S2b). The narrower band gap near the Fermi level when compared to the pristine surface, is due to the defect states introduced as a result of vacancy formation (see Supporting Information). Contrarily, after CO₂ dissociated on MoS₂ 1V-Mo_1Vs, the lattice embedded O atom acts as a coverage on the S vacancy site, thus there is a modification of the band gap near the Fermi level (see Fig. 5a). The defect states introduced as a result of unsaturated Mo atoms near the 1 S-vacancy, is now eliminated by the lattice embedded O atom, forming 3 saturated Mo-O bonds. Hence, the band gap near the Fermi level of this stable structure is normalized and compares with that of the perfect surface. This result agrees with reported studies that atmospheric oxygen heals vacancies and other defects resulting from sulfur vacancy in MoS₂ [46,47].

The isosurfaces of spin density difference for the CO₂ molecule adsorption on the defect surfaces (MoS2_1Vs and MoS2_1VMo_1Vs) are presented in Fig. 6. There is a charge difference re-distribution in the middle region between CO2 molecule and MoS2_1VMo_1VS substrate (Fig. 6b), with much noticeable polarization of the $MoS_2_1V_{Mo}_1V_S$ sheet upon CO2 adsorption. This indicates a stronger covalent character, when compared to the perfect surface (Fig. S2a). This explains why the MoS₂₋1V_{Mo-}1V_S gives a higher adsorption energy than the PMoS₂. Meanwhile, there is more charge transfer and stronger interaction between the $MoS_{2_1}V_S$ surface with the lattice-embedded O atom and CO molecule (Fig. 6a), which can be compared to that of Lewis acid interaction. The electrophilic C atom of CO makes the molecule Lewis acidic and interacts with lattice embedded O atom through electron acceptordonor type interaction. A total electron charge of about 1.015 e is transferred from the surface to the CO molecule, with the embedded O atom contributing a considerable 0.109 e. The interaction of CO with the $MoS_{2}IV_{S}$ is favored by -0.968 e when compared to the total amount charge received by CO₂ molecule from both PMoS₂ and MoS₂ 1V_{Mo} 1V_S vacancy surfaces. The high amount of charge transfer to the CO molecule and the stability of electronic structure of 1 S-vacancy MoS₂ due to

the presence of O atom provides evidence of n-type doping, and the effect of O atom on stabilizing the electronic properties MoS_2 . Hence, this large electron transfer significantly changes the electronic transport properties of $MoS_2_1V_S$.

3.4. CO2 adsorption on N-doped defected MoS2 monolayer

From the results presented in Table 2, it is evident that the MoS₂ 1V_{Mo} 3N_S site possesses the highest activity for CO₂ adsorption $(E_{AE} = -1.818 \text{ eV})$ amongst all of the considered N-doped models, which is significantly higher than the defective MoS₂ monolayers (MoS₂ 1V_S and $MoS_2_1V_{Mo}_1V_S$). Therefore, to understand the effect of nitrogen doping on vacancy MoS₂, the adsorption characteristic of MoS₂ 1V- M_0 3N_S is investigated. Also, the adsorption properties of CO₂ molecule on $MoS_2 1V_{Mo} 3N_S$ sites are calculated and compared with that of the perfect MoS₂ and non-doped vacancy surfaces. As shown in Fig. 4, CO₂ physisorbed on MoS₂ 1V_{Mo} 3N_S has an equilibrium molecular height of 3.313 Å with its molecular axis parallel to the $MoS_2_1V_{Mo}_3N_S$ basal plane. This parallel adsorption configuration is similar to that of CO2 adsorption on the pristine MoS2 surface, except that the CO2 physisorbed on the perfect surface displayed an equilibrium molecular height of 3.456 Å. The physisorption of CO_2 molecule on the N doped vacancy site stretches out the surficial N atoms resulting in an increase in d_{N-Mo} from 1.93 Å (Table 1) to 2.046 Å (Tables 2).

The interaction between CO_2 and $MoS_2_1V_{Mo}_3N_S$ surface yields stronger CO2-surface interactions compared to pristine MoS2 (PMoS2) or the other defect (vacancy or N-substitutional doping) sites. Specifically, the CO₂ adsorption physisorption energy is approximately 13 times as strong as that on a PMoS₂. The superior adsorption performance is also illustrated by the difference in the equilibrium molecular height between MoS2_1VMo_3NS and PMoS2. The difference can be explained by their bonding nature with CO₂. The positively charged central carbon atom of CO₂ molecule is attracted electrostatically to the negatively charged tertiary nitrogen atoms surrounding the Mo vacancy. The absence of an Mo atom lessens the repulsive component of the interaction. As shown in Table S2, the adsorption energetic configuration for CO2 molecule on MoS2 1VMo 3NS is obtained when the linear CO2 molecular axis is placed parallel to the surface. Less or repulsive interaction is observed when linear CO2 is perpendicularly oriented to the surface, with the O atom pointing to the MoS₂ basal plane. The result indicates that for pristine MoS₂ surface, CO₂ physisorption mainly occur on the basal plane through van der Waals interaction, whereas the N atoms surrounding the Mo vacancy site in $MoS_2_1V_{Mo}_3N_S$ promotes the physical interaction between CO2 molecules through non-covalent interaction and enhanced electrostatic interaction on the N doped Mo

Fig. 5. (a) The TDOS and (b) The PDOS projected on the p and d orbitals of respective S and Mo atoms near to the MoS and S vacancy sites, p orbital of N dopants and the s and p orbitals of the physorbed CO and CO₂ molecules, and lattice embedded O atom. $MoS_2_1V_{S_0}$, $MoS_2_1V_{Mo_2}N_S$ and $MoS_2_1V_{Mo_2}N_S$ represent 1 S-vacancy, 1Mo- and 1S-vacancy, and tertiary nitrogen doped 1 Mo-vacancy MoS_2 monolayers, respectively. The vertical dashed line corresponds to the Fermi level.

Fig. 6. Top and side views of isosurfaces of spin density difference of (a) 1 S-vacancy, (b) 1 Mo and 1 S vacancy and (c) tertiary nitrogen doped 1 Mo-vacancy, with isosurface taken as ± 0.00015 e/Bohr³. The light blue and pink colors represent increase and decrease of electron density, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

vacancy sites. This result demonstrates that N doping could boost the effective surface for CO_2 adsorption by facilitating both van der Waals and electrostatic interactions. This phenomenon is quite similar to CO_2 physisorption on N doped carbon surface [48].

Furthermore, the geometric structures of CO₂ molecule adsorbed on $MoS_2_1V_{Mo_}3N_S$ were calculated to understand the surface-molecule interactions. The bond length and bond angle of the physisorbed CO₂ molecule were calculated and compared related to the values in gas phase. As shown in Table 2, the bond angle of the physisorbed CO₂ molecule changed compared to the gas phase CO₂. The calculated bond angle of physisorbed CO₂ is 178.68°, which decreased by 1.42° with respect to the gas phase CO₂ molecule [43]. The decrease in CO₂ bond angle makes the optimized state highly exothermic with a difference in adsorption energy of about -1.7 eV with respect to the pristine surface, where the bond angles remain almost unchanged after adsorption. Table 2 also shows that, the bond length of physisorbed CO₂ molecule are unchanged compared to the gas phase CO₂ molecule. Therefore, the geometric structure of CO₂ molecule is not affected when it is adsorbed on N doped 1 Mo-vacancy site, indicating only physical interaction.

Similar to the perfect and MoS₂_1V_{M0}_1V_S surfaces, the DOS analysis shows that there are no significant changes in the DOS spectra of either valence or conduction band of MoS₂_1V_{M0}_3N_S upon CO₂ adsorption. However, the band gap near the Fermi level was observed to be narrower than that for the pristine surface since the introduction of the N atom and 1 Mo-vacancy induces impurity and defect state, respectively, as explained in Section 3.1. The only observed effect of the adsorption is the orbital coupling between the p orbital of the CO₂ molecule and the d orbital of the Mo atom, as shown in Fig. 5b.

Bader charge analysis reveals that the interaction between the CO_2 molecule and $MoS_2_1V_{Mo_}3N_S$ surface also resulted in charge transfer and redistribution. As shown in Table 2, while 0.020 e is transferred to CO_2 in the pristine surface, only 0.012 e is transferred to CO_2 when 1 Mo-vacancy is doped with N atoms. The difference in the charge transfer supports the Lewis-acid interaction analogy between CO_2 and $MoS_2_1V_{Mo_}3N_S$ surface, but less noticeable when compared to the pristine and non-doped vacancy surfaces. Moreover, the reactive surface N atoms gain more electrons after CO_2 adsorption compared to the electrons gained by the N dopants before and after CO_2 adsorption is 2.21 e (Table 1) and 2.557 e, respectively. Thus, the N dopants become more negatively charged after adsorption with an additional charge of 0.347 e. Also, as the surface N atoms become negatively charged, less

charge is transferred to CO_2 molecule and higher adsorption energy is obtained, different from the behavior observed in pristine (PMoS₂) and non-doped vacancy (MoS₂₋₁V_S and MoS₂₋₁V_{Mo-1}V_S) surfaces. This is attributed to the electron transfer from the oxygen atom of CO_2 molecules and indicates that CO_2 molecule binds strongly onto the N doped vacancy site by transferring some of the electrons of the O atom. These results further demonstrate that nitrogen doping of MoS₂ belongs to the p-type doping, which agrees with reference [42].

This conclusion drawn based on Bader charge analysis can be confirmed by the charge density difference, $\Delta \rho_{df}$. As shown in Fig. 6c, charge difference redistributes in the middle region between CO₂ molecule and $MoS_{2}1V_{Mo}3N_{S}$ substrate, with much more noticeable polarization of the MoS2_1VMo_3NS sheet upon molecules adsorption, indicating a stronger covalent character, when compared to the perfect surface and the $MoS_2_1V_{Mo}_1V_S$. The light blue and pink colors represent increase and decrease of charge electron density, respectively. When CO₂ is physisorbed onto the surface, the reactive surface N atoms receive electrons from the region between the CO₂ central carbon atom and itself to strength the interaction between CO₂ and the surface. The increase in the pink color (decrease of electron density) in the middle region between the CO_2 and $MoS_2_1V_{Mo}_3N_S$ surface compared to the cases of defect-free and non-doped defective surfaces, indicates less charge transfer to CO₂ upon the adsorption on MoS₂_1V_{Mo}_3N_S. Also, the increase in the light blue color (increase of electron density) on the surface N atoms compared to MoS2_1VMo_3NS surface before adsorption (Fig. 2), shows the reactive surface N atoms gained more electron after CO₂ adsorption. As a result, a large region of electron depletion appears near the oxygen atoms and there is lower electron density surrounding CO₂ compared to that of CO₂ in perfect surface (Fig. S2). For the magnetic properties, upon CO₂ adsorption, the magnetic moment of the surface N atom is significantly reduced to 0.027 µ_B, while the net magnetic moment locates on the adsorbed CO₂ molecule as shown in Fig. 6c. This significant impact on the magnetic moment of MoS2_1VMo_3NS upon CO2 adsorption proposes that MoS2_1VM0_3NS as a suitable CO2 sensing device. These results suggest that, CO2 interacts strongly with the Mo vacancy site, when the surrounding S atoms are substituted with N atoms. In general, the adsorption efficacy of the MoS₂ surface can be promoted by any measure that can enhance the electrostatic interaction between the CO₂ molecule and the surface complex, other than vdW interactions. This can be revealed by the electron charge distribution and magnetic moment-induced polarization. The qualitative difference between adsorption mechanisms associated with CO2 on the perfect surface and non-doped vacancy defect sites, and nitrogen doped Mo vacancy defect sites stresses the importance of nitrogen doping on vacancies for CO_2 adsorption in the MoS_2 system.

3.5. Infrared (IR) spectroscopy of CO2 adsorption on $MoS2_1V_{S}$, $MoS2_1V_{Ma_2}1V_S$ and $MoS2_1V_{Ma_2}3N_S$ surfaces

Calculation of the infrared (IR) spectroscopy of molecules adsorbed on the surface in conjunction with the experimental measurements can provide valuable approach to probe the structure of the surface absorbates. The vibrational frequencies of the CO2 molecule adsorbed on MoS₂₋₁V_S, MoS₂₋₁V_{Mo-1}V_S and MoS₂₋₁V_{Mo-3}N_S surfaces were calculated and compared to the gas phase. As shown in Table 3, the vibrational frequencies of the asymmetric (ν 3) and symmetric (ν 1) stretching modes for gas phase CO_2 was calculated to be 2361 cm⁻¹ and 1328 cm^{-1} , respectively. The bending frequencies (v2) for gas phase CO₂ is calculated to be 633 cm⁻¹. The calculated value is in good agreement with the experimental value [43,49]. The discrepancies between the DFT calculated vibrational frequencies and the true vibrational frequencies arise from the harmonic treatment of the DFT vibrations and the inexact nature of DFT in solving the Schrödinger equation, which are common in quantum chemistry calculations [50]. To correct the discrepancies, the DFT results are often multiplied by a scaling factor (in the range of 0.95-0.99 for typical GGA) to match the experimental measurements [50]. In this study, we used scaling factor of 0.989.

The computed asymmetric stretching modes (ν 3) for physisorbed CO₂ molecule on MoS₂.1V_{Mo_}1V_S and MoS₂.1V_{Mo_}3N_S surfaces are 2353 cm⁻¹ and 2355 cm⁻¹, respectively. These values downshifts by 8 cm⁻¹ and 6 cm⁻¹ to the value calculated in gas phase CO₂. The calculated symmetric stretching modes (ν 1) for physisorbed CO₂ on MoS₂.1V-Mo_3N_S surface, 1317 cm⁻¹, downshifts by 11 cm⁻¹ with respect to the calculated symmetric stretching mode of gas phase CO₂. The calculated symmetric stretching mode for physisorbed CO₂ on MoS₂.1V-Mo_1N_S is 1315 cm⁻¹, which downshifts by 13 cm⁻¹ with respect to the calculated symmetric stretching mode of CO₂ in the gas phase. The slight downshift in the vibrational frequencies of the physisorbed CO₂ molecule indicates that the C=O bonds are slightly weaken when CO₂ molecule interact with MoS₂.1V_{Mo} 1V_S and MoS₂.1V_{Mo_3}N_S sites.

Moreover, upon interaction with $MoS_2_1V_{Mo}_3N_S$ site, the CO_2 deformation mode (ν 2) of 633 cm⁻¹ remain unchanged with respect to the computed value in gas phase. Upon interacting with $MoS_2_1V_{Mo}_1V_S$ site, deformation mode (ν 2) of CO_2 is 623 cm⁻¹, which downshifts by 10 cm⁻¹ compared to the ν 2 mode in the gas phase. This downshift is responsible for the slight increase in C=O bond length as shown in Table 2. Together with the fact that the bond length and vibrational frequencies of CO_2 slightly changed, it can be concluded that C=O bonds are slightly weakened when CO_2 molecule is physisorbed on $MoS_2_1V_{Mo}_1V_S$ and $MoS_2_1V_{Mo}_3N_S$ sites. This confirms that there is no chemical bonding, and interactions are dominated by weak vdW forces.

We also calculated the vibrational mode of CO molecule formed upon CO₂ interaction with MoS₂_1V_S site. The most intense frequency value, 2119 cm⁻¹, corresponds to C \equiv O stretching mode (Table 3), which is in excellent agreement with the experimental value [43,49].

This value is lower than the C=O bonds in the gas phase CO₂. In addition to the decrease in C–O bond length and the formation of triple bond, we can conclude that the dissociation of CO₂ on $MoS_2_1V_S$ site leads to the formation CO molecule. To the authors' knowledge, in terms of experimental and computational comparison, there are no direct vibrational frequencies of CO₂ molecule physisorbed on non-doped vacancy and tertiary N doped Mo vacancy MoS_2 sites. It is reasonable to compare the computed modes with CO₂ molecule in gas phase, in order to understand how these modes shifted upon interacting with the surfaces.

3.6. Selective adsorption of CO_2 , N_2 and H_2O

An effective CO_2 adsorbent should selectively adsorb CO_2 molecule over other competitive gaseous molecules, such as N_2 . Since our interest is on selectivity, only the binding energies of all the molecules on pristine and defect MOS_2 monolayer sites are compared and discussed here. This is important for testing the trapping and catalytic activity of the MOS_2 sites. All the calculated results for the most stable adsorption configurations of N_2 and H_2O molecules on different surfaces are summarized in the Supporting Information (Table S10 and Table S11).

The highest adsorption energies between each substrate and the adsorbate (CO₂, N₂ and H₂O) are compared in Fig. 7a. It can be seen that the N₂ adsorption is weaker than CO₂ adsorption for all surfaces except MoS₂1N_{Mo}_1N_S, in which N₂ is dissociated with a high dissociation energy rather than adsorbing on the surface. The weaker adsorption energy of N₂ is attributed to its smaller quadrupole moment and polarizability properties than those of CO₂. Also, MoS₂1V_S exhibits a weaker interaction with N₂ than pristine MoS₂ and the defective surfaces. The interaction between N₂ and MoS₂1V_S is repulsive as shown by the positive adsorption energy value, whereas CO₂ interacts exothermically with MoS₂1V_S is a good adsorbent for CO₂ activation and not effective for N₂ adsorption.

It is clear that the selective adsorption of CO₂ over N₂ is based on different binding affinities on the adsorbent surface. Therefore, the ratio and difference of the highest adsorption energies for CO₂ and N₂ can be indicators of selective adsorption (Fig. 7b). From Fig. 7b, MoS₂_1V_S and PMoS₂ exhibit a relatively higher ratio of adsorption energy, while MoS₂_1N_S, MoS₂_2N_S, MoS₂_3N_S and MoS₂_1V_S_1N_S exhibit similar ratio of adsorption energy. The highest ratio of 5.1 is obtained for MoS₂_1N_S. Although the highest adsorption energies for CO₂ and N₂ molecules are obtained for MoS₂_1V_{Mo_3}N_S structure as explained in the Supporting Information (S6), but smaller ratio of 1.0 compared to the values obtained for CO₂ and N₂ is compared, MoS₂_1V_S site appears to be more suitable adsorbent for selective adsorption and separation of CO₂ over N₂.

The adsorption of an H_2O molecule on the same surfaces are also compared to CO_2 adsorption to predict the stability of the defect and defect free MoS_2 monolayers towards H_2O contaminant. Fig. 7c presents the ratio and difference of the highest adsorption energies for CO_2 and H_2O in each studied surface. Unlike the N_2 adsorption, H_2O was found to

Table 3

Calculated Vibrational Frequencies (cm⁻¹) for CO_2 molecule adsorption on $MoS_2_1V_S$, $MoS_2_1V_{Mo_2}1V_S$ and $MoS_2_1V_{Mo_2}3N_S$ sites. Calculated and Experimental values of gas-phase CO_2 molecule are included for comparison.

Molecule	Gas-phase		Physisorption o	on $MoS_2_1V_{Mo_1}V_S/MoS_2_1V_{Mo_3}N_S$	Dissociation on MoS2_1Vs		
	Experimental	Theoretical	Current work				
C=0							
stretching	2349 [43,49]	2360 [40]	2361	2353/2355			
Asymmetric (v3)	1333 [43,49]	1321 [40]	1328	1315/1317			
Symmetric (v1)							
C=O bending $(v2)$	667 [43,49]	638 [40]	633	623/633			
C≡O stretching	2131 [43,49]				2119		

Fig. 7. Investigation of CO_2 adsorption selectivity over N_2 and the effect of moisture content (a) The adsorption energies of CO_2 , N_2 and H_2O molecules for the most stable adsorption configurations compared at 2.5 Å molecular height, (b) ratio and difference of adsorption energies between CO_2 and N_2 molecules, (c) ratio and difference of adsorption energies between CO_2 and H_2O molecules.

bind more strongly on all the surfaces than CO_2 except on $MOS_2_1V_S$ monolayer. The stronger adsorption of H_2O molecule is characterized by its high polarity and quadrupole moment than those of CO_2 . This is because the polarity of molecules adsorbed on any surface represents a very important factor that influences their interaction with the electric field of the surface. In other words, adsorbates that have the high quadrupole moment, such as H_2O , interact strongly with the electric field of MOS_2 monolayer and this favors their adsorption.

The highest ratio of 3.5 is obtained for $MoS_2_1V_S$, whereas an adsorption ratio less than one is obtained for other surfaces. Also, by comparing the difference in adsorption energies for CO_2 and H_2O , it is evident that $MoS_2_1V_S$ favors CO_2 adsorption over H_2O . The positive difference in the adsorption energies and low ratio of adsorption energies of CO_2 over H_2O for the pristine, N-substitutional and double vacant systems indicate that the exhibit excellent selective adsorption of H_2O over CO_2 molecule. Therefore, the presence of H_2O could significantly decrease the adsorption and separation of CO_2 . Although the results showed that $MoS_2_1V_S$ site is suitable adsorbent for selective adsorption and separation of CO_2 , the optimization of the MoS_2

monolayers structural characteristics and the experimental conditions that will ensure the removal of water vapor to the lowest value might enhance substantially their CO_2 adsorption capacity and thereby might give rise to the excellent adsorbents that may be used to capturing the industrial emissions of CO_2 . Finally, CO_2 appears to bind stronger on $MOS_2_1V_{MO_2}3N_S$ site than N_2 , making it suitable adsorbent for selective adsorption and separation of CO_2 over N_2 , but for the application of CO_2 storage, the existence of H_2O may affect the partial charge distribution of the nitrogen doped vacancy sites.

4. Conclusions

It can be concluded that all of the considered surfaces with vacancy defects and N-doping at the vacancy site exhibit superior adsorption activity, selectivity and stability except for the N-substituted Mo atom ($MoS_2_1N_{Mo}$) surface. Among the 10 different surface models studied, the 1 sulfur-vacancy ($MoS_2_1V_S$) and tertiary nitrogen doped 1 Movacancy ($MoS_2_1V_{Mo}_3N_S$) exhibit strong binding energies of -0.908 and -1.818 eV, respectively. These values are approximately 7 and 13 times as strong as that of a pristine MoS_2 surface. The results reveal that

 $\rm CO_2$ mainly adsorbs on the basal plane of pristine $\rm MoS_2$ surface as a result of van der Waals interactions, while the vacancy defect and N doping perturb the local electron density of $\rm MoS_2$ surfaces and greatly promote $\rm CO_2$ adsorption with covalent and electrostatic interactions. Among various vacancy defects, $\rm MoS_2.1V_S$ improved adsorption efficiency of $\rm CO_2$ through dissociative chemisorption, leading to reduction of $\rm CO_2$ to CO gas. This phenomenon is promoted by the perpendicular orientation of the $\rm CO_2$ molecule after geometric optimization, which increased the covalent attractions at the vacant site. Meanwhile, a double molybdenum and sulfur (MoS) vacancy defect ($\rm MoS_2.1V_{Mo}.1V_S$) facilitates $\rm CO_2$ physisorption by enhancing the van der Waals interactions between $\rm CO_2$ and the basal plane of the vacancy site. The promotional effects of tertiary nitrogen doping of 1 Mo-vacancy on $\rm CO_2$ physisorption can be attributed to the enhanced electrostatic interactions.

In addition, $MoS_2_1V_S$ and $MoS_2_1V_{Mo}_3N_S$ surfaces showed a stronger selective adsorption of CO_2 over N_2 . Due to stronger adsorption energy of H_2O over CO_2 at the tertiary nitrogen doped 1 Mo-vacancy site, application of this material for CO_2 storage maybe limited by moisture, by affecting the partial charge distribution of the nitrogen species at the vacancy site. The results in this study are expected to be helpful to reveal the CO_2 adsorption mechanism and develop CO_2 adsorbents based on MoS_2 materials containing nitrogen. These will provide new insights for improved molecular adsorption on heteroatom-doped MoS_2 surfaces, which has been witnessed on carbon surfaces.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the New Materials Institute (NMI), University of Nottingham Ningbo China (UNNC). The Zhejiang Provincial Department of Science and Technology is acknowledged for this research under its Provincial Key Laboratory Program (2020E10018). Ningbo Bureau of Science and Technology is thanked for sponsoring the Municipal Key Laboratory of Clean Energy Conversion Technologies; Ningbo Bureal of Education is appreciated for its funding to Municipal Comprehensive Collaborative Innovation Centre. We are also grateful for the access to the University of Nottingham High Performance Computing facility both in Ningbo China and Nottingham UK. Hainam Do is grateful for a research fund for International Young Scientists from the National Natural Science Foundation of China (Grant No. 21850410456). Special thanks to the Computational Chemistry Super Group (compchemsupergroup) of University of Nottingham United Kingdom. We thank Prof. Jonathan Hirst for his helpful discussions and insight on this work, and Linbin Yao for the graphical work. In addition, we thank Prof. Kieron Burke for his helpful insights on the issue of delocalization error found in PBE-GGA functional. Elena Besley acknowledges a Royal Society Wolfson Fellowship for financial support.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apsusc.2020.148556.

References

- [1] K. Lv, C. Teng, M. Shi, Y. Yuan, Y. Zhu, J. Wang, Z. Kong, X. Lu, Y. Zhu, Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios, Adv. Funct. Mater. 28 (2018) 1802339.
- [2] S. Budinis, S. Krevor, N.M. Dowell, N. Brandon, A. Hawkes, An assessment of CCS costs, barriers and potential, Energy Strategy Rev. 22 (2018) 61–81.

- [3] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of twodimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263.
- [4] X. Chia, A. Adriano, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: monotonic dependence on the chalcogen size, Adv. Funct. Mater. 26 (2016) 4306–4318.
- [5] A.S. Rad, First principles study of Al-doped graphene as nanostructure adsorbent for NO₂ and N₂O: DFT calculations, Appl. Surf. Sci. 357 (2015) 1217–1224.
- [6] A.S. Rad, E. Abedini, Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: a first principles study, Appl. Surf. Sci. 360 (2016) 1041–1046.
- [7] A.S. Rad, O.R. Kashani, Adsorption of acetyl halide molecules on the surface of pristine and Al-doped graphene: ab initio study, Appl. Surf. Sci. 355 (2015) 233–241.
- [8] A. Shokuhi Rad, D. Zareyee, M. Peyravi, M. Jahanshahi, Surface study of galliumand aluminum- doped graphenes upon adsorption of cytosine: DFT calculations, Appl. Surf. Sci. 390 (2016) 444–451.
- [9] A.S. Rad, S.S. Shabestari, S.A. Jafari, M.R. Zardoost, A. Mirabi, N-doped graphene as a nanostructure adsorbent for carbon monoxide: DFT calculations, Mol. Phys. 114 (2016) 1756–1762.
- [10] S. Muhammad Hafiz, R. Ritikos, T.J. Whitcher, N.Md. Razib, D.C.S. Bien, N. Chanlek, H. Nakajima, T. Saisopa, P. Songsiriritthigul, N.M. Huang, S. A. Rahman, A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide, Sens. Actuators, B 193 (2014) 692–700.
- [11] V.P. Pham, G.Y. Yeom, Recent advances in doping of molybdenum disulfide: industrial applications and future prospects, Adv. Mater. 28 (2016) 9024–9059.
- [12] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS₂: a new directgap semiconductor, Phys. Rev. Lett. 105 (2010), 136805.
- [13] S. Zhao, J. Xue, W. Kang, Gas adsorption on MoS2 monolayer from first-principles calculations, Chem. Phys. Lett. 595–596 (2014) 35–42.
- [14] A. Shokri, N. Salami, Gas sensor based on MoS2 monolayer, Sens. Actuators, B 236 (2016) 378–385.
- [15] E.W. Keong Koh, C.H. Chiu, Y.K. Lim, Y.-W. Zhang, H. Pan, Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study, Int. J. Hydrogen Energy 37 (2012) 14323–14328.
- [16] S.-Y. Cho, S.J. Kim, Y. Lee, J.-S. Kim, W.-B. Jung, H.-W. Yoo, J. Kim, H.-T. Jung, Highly enhanced gas adsorption properties in vertically aligned MoS₂ layers, ACS Nano 9 (2015) 9314–9321.
- [17] C. Ataca, S. Ciraci, Dissociation of H₂O at the vacancies of single-layer MoS₂, Phys. Rev. B 85 (2012), 195410.
- [18] D. Ma, W. Ju, T. Li, G. Yang, C. He, B. Ma, Y. Tang, Z. Lu, Z. Yang, Formaldehyde molecule adsorption on the doped monolayer MoS₂: a first-principles study, Appl. Surf. Sci. 371 (2016) 180–188.
- [19] N. Yu, L. Wang, M. Li, X. Sun, T. Hou, Y. Li, Molybdenum disulfide as a highly efficient adsorbent for non-polar gases, Phys. Chem. Chem. Phys. 17 (2015) 11700–11704.
- [20] J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, Z. Zhang, Exploring atomic defects in molybdenum disulphide monolayers, Nat. Commun. 6 (2015) 6293.
- [21] H. Li, M. Huang, G. Cao, Markedly different adsorption behaviors of gas molecules on defective monolayer MoS₂: a first-principles study, Phys. Chem. Chem. Phys. 18 (2016) 15110–15117.
- [22] H. Schweiger, P. Raybaud, G. Kresse, H. Toulhoat, Shape and edge sites modifications of MoS₂ catalytic nanoparticles induced by working conditions: a theoretical study, J. Catal. 207 (2002) 76–87.
- [23] O.G. Sánchez, Y.Y. Birdja, M. Bulut, J. Vaes, T. Breugelmans, D. Pant, Recent advances in industrial CO₂ electroreduction, Curr. Opin. Green Sustain. Chem. 16 (2019) 47–56.
- [24] H. Wang, Z. Cheng, Y. Liao, J. Li, J. Weber, A. Thomas, C.F.J. Faul, Conjugated microporous polycarbazole networks as precursors for nitrogen-enriched microporous carbons for CO₂ storage and electrochemical capacitors, Chem. Mater. 29 (2017) 4885–4893.
- [25] H. Li, J. Li, A. Thomas, Y. Liao, Ultra-high surface area nitrogen-doped carbon aerogels derived from a schiff-base porous organic polymer aerogel for CO₂ storage and supercapacitors, Adv. Funct. Mater. 29 (2019) 1904785.
- [26] Shijun Zhao, Jianming Xue, W. Kang, Gas adsorption on MoS₂ monolayer from first-principles calculations, Chem. Phys. Lett. 595–596 (2014) 35–42.
- [27] Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS₂ and effect of applied electric field, Nanoscale Res. Lett. 8 (2013) 1–7.
- [28] Y. Wang, S. Li, J. Yi, Electronic and magnetic properties of Co doped MoS₂ monolayer, Sci. Rep. 6 (2016) 24153.
- [29] C. Ataca, S. Ciraci, Functionalization of single-layer MoS₂ honeycomb structures, J. Phys. Chem. C 115 (2011) 13303–13311.
- [30] S. Grimme, Semiempirical GGA-type density functional constructed with a longrange dispersion correction, J. Comput. Chem. 27 (2006) 1787–1799.
- [31] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186.
- [32] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.
- [33] S.E. Mason, P.H. Beton, N.A. Besley, AIRBED: A simplified density functional theory model for physisorption on surfaces, J. Chem. Theory Comput. 15 (2019) 5628–5634.
- [34] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

F.M. Enujekwu et al.

- [35] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188–5192.
- [36] G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 (2006) 354–360.
- [37] N.A. Besley, J.A. Bryan, Partial hessian vibrational analysis of organic molecules adsorbed on Si(100), J. Phys. Chem. C 112 (2008) 4308–4314.
- [38] P. Joensen, E.D. Crozier, N. Alberding, R.F. Frindt, A study of single-layer and restacked MoS₂ by X-ray diffraction and X-ray absorption spectroscopy, J. Phys. C: Solid State Phys. 20 (1987) 4043.
- [39] F.M. Enujekwu, C.I. Ezeh, M.W. George, M. Xu, H. Do, Y. Zhang, H. Zhao, T. Wu, A comparative study of mechanisms of the adsorption of CO₂ confined within graphene–MoS₂ nanosheets: a DFT trend study, Nanoscale Adv. 1 (2019) 1442–1451.
- [40] Y. Liu, J. Wilcox, CO₂ adsorption on carbon models of organic constituents of gas shale and coal, Environ. Sci. Technol. 45 (2011) 809–814.
- [41] A.L. Allred, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem. 17 (1961) 215–221.
- [42] A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng, Q. Wang, N. Lu, M.J. Kim, J. Kim, K. Cho, R. Addou, C.L. Hinkle, J. Appenzeller, R.M. Wallace, Covalent nitrogen doping and compressive strain in MoS₂ by remote N2Plasma exposure, Nano Lett. 16 (2016) 5437–5443.

- [43] CRC, Crc Handbook of Chemistry and Physics, 90th ed.;, CRC Press, Boca Raton, FL, 2009–2010.
- [44] D. Saha, Z. Bao, F. Jia, S. Deng, Adsorption of CO₂, CH₄, N₂O, and N₂ on MOF-5, MOF-177, and Zeolite 5A, Environ. Sci. Technol. 44 (2010) 1820–1826.
- [45] Y. Zheng, S. Zheng, H. Xue, H. Pang, Metal-organic frameworks/graphene-based materials: preparations and applications, Adv. Funct. Mater. 28 (2018) 1804950.
- [46] A.A. Kistanov, S.K. Khadiullin, S.V. Dmitriev, E.A. Korznikova, Effect of oxygen doping on the stability and band structure of borophene nanoribbons, Chem. Phys. Lett. 728 (2019) 53–56.
- [47] D. Ma, Q. Wang, T. Li, C. He, B. Ma, Y. Tang, Z. Lu, Z. Yang, Repairing sulfur vacancies in the MoS₂ monolayer by using CO, NO and NO₂ molecules, J. Mater. Chem. C 4 (2016) 7093–7101.
- [48] J. Li, M. Hou, Y. Chen, W. Cen, Y. Chu, S. Yin, Enhanced CO₂ capture on graphene via N, S dual-doping, Appl. Surf. Sci. 399 (2017) 420–425.
- [49] W.B. Person, G. Zerbi, Vibrational intensities in infrared and Raman spectroscopy, Amsterdam : Elsevier scientific, 1982.
- [50] D.S. Sholl, J.A. Steckel, Accuracy and Methods beyond "Standard" Calculations, Density Functional Theory: A Practical Introduction, John Wiley & Sons Inc, Hoboken, NJ, 2009, pp. 209–233.