
10.1098/rspa.2001.0919

On the semiclassical approach to
cold atomic collisions

By E. Bichoutskaia†, D. S. F. Crothers‡ and D. Sokolovski

Theoretical and Computational Physics Research Division, David Bates Buiding,
The Queen’s University of Belfast, Belfast BT7 1NN, UK

Received 23 May 2001; accepted 25 September 2001;
published online 25 April 2002

We extend the semiclassical description of two-state atomic collisions to low energies
for which the impact parameter treatment fails. The problem reduces to solving
a system of first-order differential equations with coefficients whose semiclassical
asymptotes experience the Stokes phenomenon in the complex coordinate plane.
Primitive semiclassical and uniform Airy approximations are discussed.
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1. Introduction

The theory of collisions between two atomic systems goes back to the early days of
quantum mechanics (Mott 1931; Teller 1937; Landau & Teller 1936) and the basic
1930s models of state interaction are detailed in the recent review of Nikitin (1999).
Typically, the colliding atoms undergo electronic transitions and one needs to solve
a number (in the simplest case, two) of coupled radial Schrödinger equations. It has
been noted since the early thirties that the relative motion of the heavy nuclei can be
described classically (Mott 1931; Rosen & Zener 1932). Semiclassically, Stueckelberg
(1932) first suggested the analytical continuation of the JWKB (Jeffreys–Wentzel–
Kramers–Brillouin) wave functions into the complex plane of the internuclear sepa-
ration and a proper handling of the Stokes phenomenon. His solution of the avoided
crossing time-independent problem (Stueckelberg 1932) shows why a description of
the interference in terms of adiabatic quasiclassical phases fails if the phase difference
accumulated during the adiabatic motion of the two atoms between the centre of the
coupling region and the turning points is small. The vexatious problem of the choice
of branch cuts and the determination of Stokes constants via the comparison equa-
tion method, were largely resolved by Crothers (1971). Equally well, it was shown
by Coveney et al . (1985) that the classically forbidden region is less amenable to
generalized phase-integral analysis.

The classical approximation of the nuclear motion leads to the impact parameter
treatment (Gaunt 1927; Landau 1932; Zener 1932). The impact parameter approx-
imation (IPA) offers a simple physical picture in which fast electronic transitions
occur as the slow nuclei follow a classical trajectory. By its nature, the IPA neglects
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the transitions induced in the classically forbidden region inaccessible to the classi-
cal motion. These, however, become more important at low collision energies when
most of the coupling is concentrated under the centrifugal barrier. There exists a
rich variety of literature aimed at improving the IPA (for reviews, see Bates & Holt
1966). In particular, Bates & Crothers (1970) considered the case when the classi-
cal trajectories are considerably different for the two states involved. To retain the
attractive features of the IPA, they suggested modifying centrifugal potentials in
both channels in order to force a common turning point for both states. In their
approach they found it convenient to replace the two coupled radial equations by
four exact first-order equations whose coefficients involved uncoupled wave functions
satisfying at infinity purely ingoing and outgoing boundary conditions.

In this paper we use the Bates & Crothers equations as a basis for extending the
semiclassical treatment to cold collisions for which the IPA fails. Mathematically, we
study the problem of finding the semiclassical (� → 0) asymptote to the solution
of a system of first-order differential equations whose coefficients themselves involve
semiclassical wave functions (corresponding to the uncoupled system). As � → 0,
their primitive semiclassical asymptotes become singular at their respective turning
points and experience the Stokes phenomenon in the complex r-plane (where r is the
internuclear separation). The paper is organized as follows. In § 2 we follow Bates &
Crothers (1970) in deriving their equations and their reduction to the IPA method.
In § 3 we analyse a simple non-crossing problem with exponential coupling and obtain
the primitive semiclassical approximation for the S-matrix. We show that the use
of the primitive asymptotes for the coefficients in the complex r-plane results in a
loss of unitarity and to restore the latter we turn to the work of Berry (1989). In § 4
we consider the uniform Airy approximation for the coefficients and demonstrate a
good agreement with the exact solution. Section 5 contains our conclusions.

2. Equations of Bates and Crothers. The impact
parameter approximation

The atomic collision problem in the two-state approximation reduces to the solution
of two coupled radial Schrödinger equations,

d2G0l

dr2 +
(

k2
0 − l(l + 1)

r2 − U00(r)
)

G0l = U01G1l,

d2G1l

dr2 +
(

k2
1 − l(l + 1)

r2 − U11(r)
)

G1l = U10G0l,


 (2.1)

for each value of the total angular-momentum quantum number l. In (2.1), U10 = U01
is the coupling matrix element and the wave vectors kj = kj(∞), j = 0, 1, are related
to the relative velocity vj(∞) of separated atoms in the state j as

kj =
Mvj(∞)

�
, (2.2)

where M is the reduced mass. The channel wave functions Gjl are regular at the
origin,

G0l(0) = G1l(0) = 0, (2.3)

Proc. R. Soc. Lond. A (2002)



On the semiclassical approach 1401

and satisfy, as r → ∞, the boundary conditions

G0l(r → ∞) = il sin(k0(∞)r − 1
2 lπ) + αl exp(ik0(∞)r),

G1l(r → ∞) = βl exp(ik1(∞)r)

}
(2.4)

if the colliding atoms are prepared in the state 0. The constant βl is related to the
S-matrix element S01 as

S01 = βl exp(1
2 iπl)

and the (partial) transition probability Pl is given by

Pl = |βl|2 = |S01|2. (2.5)

The two coupled channel equations (2.1) can be transformed into four first-order
ones (Bates & Crothers 1970) by introducing the uncoupled channel wave functions
S±

jl (solutions of (2.1) without the right-hand side) containing at r → ∞ only the
outgoing and incoming waves, respectively,

S±
jl(r) ≈ k

−1/2
j exp(±i(kjr − 1

2 lπ)). (2.6)

Expanding the solutions Gjl(r) in the form

Gjl(r) = α+
jl(r)S

+
jl(r) + α−

jl(r)S
−
jl(r) (2.7)

leads (cf. Bates & Crothers 1970) to the following exact equations for the coefficient
functions α±

jl:
α+′

0l = −1
2 iU01S

−
0l(α

+
1lS

+
1l + α−

1lS
−
1l),

α−′
0l = 1

2 iU01S
+
0l(α

+
1lS

+
1l + α−

1lS
−
1l),

α+′
1l = −1

2 iU10S
−
1l(α

+
0lS

+
0l + α−

0lS
−
0l),

α−′
1l = 1

2 iU10S
+
1l(α

+
0lS

+
0l + α−

0lS
−
0l).




(2.8)

In terms of α±
jl, the boundary conditions (2.3), (2.4) may now be written as

α−
0l(∞) = 1

2k
1/2
0 (∞), α−

1l(∞) = 0, α+
jl(0) + α−

jl(0) = 0, j = 0, 1. (2.9)

The advantage of representation (2.8) is that properties of the uncoupled system enter
the equations through S±

jl(r). This makes (2.8) a convenient basis for semiclassical
treatment, as one only needs to replace S±

jl(r) by their semiclassical asymptotes.
To simplify the treatment further, Bates & Crothers (1970) forced the common

turning point, i.e. replaced the radial wave vectors by approximate expressions

K̃2
jl(r) = k2

j (r)
[
1 −

(l + 1
2)2

r2k0(r)k1(r)

]
(2.10)

with
k2

j (r) = k2
j (∞) − Ujj(r)

(we have included the Langer correction l(l + 1) → (l + 1
2)2). Now both channel func-

tions share the same turning point Rl, which is the greatest positive root of the
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expression in the square brackets in (2.10). Far away from Rl, in the classically
allowed region, S±

jl(r) are given by

S±
jl(r) = K̃

−1/2
jl exp(±iΦ̃jl), (2.11)

where

Φ̃jl = 1
4π +

∫ r

Rjl

Kjl(r) dr. (2.12)

Neglecting in (2.8) contributions from the classically forbidden region r < Rl, as well
as highly oscillatory terms containing products S+

0lS
+
1l and S−

0lS
−
1l for r > Rl, results

in the impact parameter equations (equations (20) and (21) of Bates & Crothers
(1970)),

±2iK̃1/2
0l K̃

1/2
1l α±′

0l = U01α
±
1l exp[∓i(Φ̃0l − Φ̃1l)],

±2iK̃1/2
0l K̃

1/2
1l α±′

1l = U10α
±
0l exp[±i(Φ̃0l − Φ̃1l)].

}
(2.13)

These can be interpreted as describing the transitions between the two states involved
as the nuclei follow a classical trajectory. The IPA has been detailed in Mott &
Massey (1965) and fully considered in Bates & Holt (1966) as applied to the prob-
lem, so we shall not pursue it any further. In the next section we study the possibil-
ity of extending the semiclassical treatment of (2.8) beyond the impact parameter
approximation (2.13).

3. Non-crossing model. Primitive semiclassical approximation

Let us consider a simple system with two parallel terms

U00 = U11 = 0

and an exponential coupling

U01 = U10 = U exp(−γr).

In (2.8) the coefficients S±
jl are now given by the spherical Hankel functions

of the first h
(1)
λ (kjr) and second h

(2)
λ (kjr) kind,

S+
jl = i(kr)h(1)

λ (kjr) = i(jλ(kjr) + iyλ(kjr))kr,

S−
jl = −i(kr)h(2)

λ (kjr) = −i(jλ(kjr) − iyλ(kjr))kr,


 (3.1)

where λ = l + 1
2 and jλ and yλ are the spherical Bessel functions of the first and

second kinds, respectively (Abramowitz & Stegun 1970).
Numerically, the S-matrix elements can be obtained by propagating two linearly

independent vectors,

α0 ≡ (α0
i , i = 1, . . . 4) = (1, −1, 0, 0) and α1 ≡ (α1

i , i = 1, . . . 4) = (0, 0, 1, −1)

from the origin sufficiently far into the asymptotic region r → ∞ and forming their
linear combinations so as to cancel the coefficient multiplying one of the incoming
waves of state.

Proc. R. Soc. Lond. A (2002)



On the semiclassical approach 1403

0 1 2 3 4

1.0

0.5

−1.0

−0.5

0

1.0

0.5

−1.0

−0.5

0

U
~

Im
 (S

01
)

R
e (

S 01
)

Figure 1. The off-diagonal S-matrix element S01 versus the coupling strength Ũ for k̃2
0 = 2.8,

∆ε̃ = 0.55 and l = 3: exact (solid line); impact parameter approximation (dashed line); primitive
semiclassical approximation (3.2), (3.3) (dot-dashed line); and the uniform Airy approximation
(filled circles).

Consider next the limits of validity of the impact parameter method. For a given
angular-momentum quantum number l and the value of the energy splitting

∆ε = k2
1 − k2

0,

there are three parameters left in the problem: the energy E = k2
0, the coupling

strength U and the size of the coupling region r0 = 1/γ. In fact, if we introduce a
new rescaled coordinate r̃ = r/r0, only two of them remain independent. Namely,

Ẽ = Er2
0

(k̃2
j = k2

j r2
0, so that Ẽ = k2

0r
2
0 = k̃2

0/r2
0 · r2

0 = k̃2
0), and in a similar way,

Ũ = Ur2
0.

Consider now the behaviour of the transition probability as a function of Ũ and
Ẽ = k̃2

0. If we increase the energy for a fixed coupling strength Ũ , the turning points
R0l and R1l in both channels will move towards the origin, until all the coupling is
contained in the classically allowed region. There the transitions can be accurately
described by the IPA (2.13). If, on the other hand, we increase the coupling strength
for a fixed energy Ẽ, the transitions in the classically forbidden region will become
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Figure 2. Transition probability P01 versus the coupling strength Ũ : exact (solid line); impact
parameter approximation (dashed line); primitive semiclassical approximation (3.2), (3.3)
(dot-dashed line); and the uniform Airy approximation (filled circles). Other parameters are
the same as in figure 1.

important and the IPA will break down, even though most of the coupling will be
restricted to r > Rjl. Comparison between the IPA method (dashed line) and the
exact numerical calculations (solid line) is shown in figure 1 for the S-matrix element
and in figure 2 for the transition probability P01. The following set of parameters
was used: l = 3, Ẽ = 2.8, ∆ε̃ = 0.55. Note that while the agreement between the
transition probabilities P01 defined in (2.5) is reasonable, the phase of the S-matrix
element is in error. Next we consider extension of the semiclassical treatment to
large U .

We have four coupled first-order equations (2.8), whose coefficients S±
jl are the

channel wave functions of the uncoupled (U = 0) problem. We start by attempt-
ing to obtain semiclassical solution of (2.8) by replacing S±

jl by their semiclassical
asymptotes.

These are divergent at the turning points Rjl and it seems natural to deform the
contour of integration of (2.8) away from the real axis so as to bypass Rjl sufficiently
far in the complex r-plane. In the complex r-plane, each of the functions S±

jl , defined
by their behaviour at r → ∞, has an asymptote that is analytic in the three sectors
partitioned by the Stokes lines, as shown in figure 3. The new complex contour C
consists of a segment of the real r-axis [0, Ra], a semicircle in the upper half-plane
and the remainder of the real r-axis [Rb, ∞]. The complex r-plane is dissected by
the Stokes lines, implicitly defined by

Re
(∫ r

Rjl

Kjl(r) dr

)
= 0, j = 0, 1,

Proc. R. Soc. Lond. A (2002)
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Figure 3. Schematic of the complex r-plane showing the behaviour of Stokes lines (dashed line)
and the integration contours C and C′. Also shown are the turning points R0l and R1l.

K2
jl(r) = k2

0(∞) −
(l + 1

2)2

r2 ,

and shown in figure 3. At the Stokes lines, the coefficient multiplying the subdominant
(exponentially small) solution is discontinuous and (explicitly) we have, for instance,
for the functions S±

0l,

S+
0l = K0l(r)−1/2 exp(iΦ0l)

in sectors I and II, but

S−
0l = K0l(r)−1/2 exp(−iΦ0l), (3.2)

in sector I and

S−
0l = K0l(r)−1/2 exp(−iΦ0l) + K0l(r)−1/2 exp(iΦ0l)

in sector II, where (we do not force the common turning point, as has been done
in (2.10))

Φ0l =
(

1
4π +

∫ r

R0l

K0l(r) dr

)
.

The functions S±
1l are given in a similar way, but in the sectors divided by the Stokes

lines originating from the turning point R1l. Inserting expressions (3.2) into (2.8)
and integrating along the contour C in figure 3, we find that the S-matrix is no
longer unitary, P00 + P01 �= 1. This unsatisfactory result deserves further attention.
Comparing the exact values of S±

jl with the asymptotes (3.2) along the arc of the
semicircle (whose length we denote σ), we find the two in good agreement, as shown
in figure 4a. Yet at the end of the arc, the approximate solutions of (2.8) differ
significantly from those obtained with exact S±

jl (figure 4b). Clearly, this is because
the small error in S±

jl accumulates along the arc. This, in turn, is a consequence of the
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Figure 4. (a) The real and imaginary parts of S−
03(r) versus the arc length σ̃ ≡ σ/r0 along

the integration contour C: exact (solid line) and semiclassical (dashed line). Intersection of the
arc with the Stokes line is indicated by a vertical dashed line. (b) Re(α0

1) and Im(α0
1) versus σ̃

along the same contour: exact (solid line) and semiclassical (dashed line). Other parameters are
k̃2
0 = 2.8, l = 3 and Ũ = 11.1.

fact that asymptotes (3.2) are not analytic in the whole of the complex r-plane. If we
try to deform the contour C back to the real axis, we obtain additional contributions
from the parts of the new contour C ′ that run up and down the Stokes lines in the
upper half of the plane (figure 3). Thus our naive attempt to obtain an accurate
semiclassical approximation by moving away from the singularities of S±

jl fails and
we need to restore the unitarity.

To do so, we refer to Berry (1989), where it is shown that on the Stokes lines
the semiclassical asymptotes of S±

jl change continuously and in such a manner that
on a Stokes line the coefficient multiplying the subdominant solution equals half
of the Stokes constant T . Since S±

jl are continuous across their respective Stokes
lines in the upper half of the complex r-plane, we can neglect integrations along the
corresponding sections of C ′. The segment of the real axis [0, Rjl] is also a Stokes
line; there we replace S±

jl by

S±
jl = Kjl(r)−1/2(exp(iΦjl) ± 1

2 i exp(−iΦjl)). (3.3)

It is necessary to retain the subdominant solution in (2.8) in order to describe the
transitions in the classically forbidden region r < min(Rjl). It is readily seen that if
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Figure 5. Re(S+
03) and Im(S+

03) versus r̃ along the real r-axis: exact (solid line), primitive
semiclassical (dotted line) and uniform Airy (dashed line). Other parameters as in figure 4.

only the exponentially growing terms were kept, the right-hand side of (2.8) would
vanish there identically.

Finally, we use the primitive semiclassical approximation of replacing S±
jl by (2.11).

The semiclassical results are shown in figures 1 and 2 by a dot-dashed line. The
unitarity is now restored, and the agreement has improved, but it is still far from
perfect. In the next section we discuss the uniform Airy approximation.

4. The uniform Airy approximation

Since it is not possible, due to non-analyticity of the semiclassical asymptotes, to
integrate (2.8) in the complex r-plane, we return to the real r-axis and replace S±

jl
near their respective turning points by the appropriate Airy functions. This can be
done as long as the potential near Rjl has a finite slope (Migdal 2000). In our case,
the potential is a centrifugal barrier and the required uniform Airy approximation is
just the transitional region expansions of the spherical Bessel functions (Abramowitz
& Stegun 1970). More specifically, in (3.1) we use

(2kjr/π)1/2jλ(kr)

∼ 21/3

λ1/3 Ai(−21/3z)
{

1 +
∞∑

k=1

fk(z)
λ2k/3

}
+

22/3

λ
Ai′(−21/3z)

∞∑
k=0

gk(z)
λ2k/3 , (4.1 a)
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(2kjr/π)1/2yλ(kr)

∼ − 21/3

λ1/3 Bi(−21/3z)
{

1 +
∞∑

k=1

fk(z)
λ2k/3

}
− 22/3

λ
Bi′(−21/3z)

∞∑
k=0

gk(z)
λ2k/3 , (4.1 b)

with
z ≡ kjr − λ

λ1/3 ,

where fk(z) and gk(z) are the coefficients given in Abramowitz & Stegun (1970)
and Ai, Bi and Ai′, Bi′ are the Airy functions and their derivatives, respectively. For
each S±

jl , asymptotes (4.1) are valid in a region [Ra, Rb] containing the turning points
Rjl. For a given l and kj , the size of the transitional region is chosen so as to ensure
that [Ra, Rb] extends on both sides into the region where the primitive semiclassical
asymptote holds (see figure 5, where the S+

03 is shown, as an example). For a given l,
both Ra and Rb scale as k−1

j as kj increases. In general, we found it necessary to
keep up to four terms in (4.1).

If the splitting ∆ε is small, the two turning points R0l < R1l are close to each
other and the r-axis is divided into three distinct regions:

(a) 0 < r < R0l;

(b) R0l < r < R1l; and

(c) r > R1l.

Region (a) lies deep in the classically forbidden region, where the coupling is large,
but the bracketed terms on the right-hand side of (2.8) are small. We expect this
region to become increasingly important as U becomes larger. In region (a) we
approximate S±

jl by (3.3). Region (b) includes the vicinity of the classical turning
points Rjl. Near the turning points the coupling may be smaller, but semiclassical
wave functions are of order unity. There S±

jl are represented by their Airy approx-
imations (4.1). Neither of these two regions is correctly described by the impact
parameter approximation. Finally, region (c) lies in the classically allowed region,
where the notion of a common classical trajectory holds, and therefore here we con-
tinue to use for S±

jl the primitive semiclassical approximation (2.11).
The results of numerical integration of (2.8) with coefficients defined as discussed

above are shown in figure 1 by the filled circles. Both real and imaginary parts of
the S-matrix element S01 agree with their exact values to numerical accuracy and
strongly disagree with the prediction of the impact parameter method. In general,
we find that all three regions contribute to the transition probability P01.

5. Conclusions

To conclude, we have extended the semiclassical description to cold atomic colli-
sions, which currently attract much interest in connection with the physics of Bose–
Einstein condensation. At low energies, much of the coupling responsible for transi-
tion between atomic states is localized in the classically forbidden region or in the
vicinity of the turning point of one or both channels. For this reason, the impact
parameter method becomes inaccurate and needs to be extended. At the same
time, the uncoupled channel wave functions can be described semiclassically and
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the required extension can be achieved by feeding semiclassical expressions for S±

into the Bates–Crothers equations (2.8). We have shown that the use of the primitive
semiclassical approximation for S± and integration of (2.8) in the complex r-plane
along a contour avoiding the classical turning points yields an incorrect (and, in gen-
eral, non-unitary) S-matrix. An improved primitive approximation can be obtained
if an appropriate combination of the dominant and subdominant solutions is used
in the classically forbidden region and integration is performed along the real axis.
This permits the taking into account of transitions that occur in the classically for-
bidden region. Finally, a correct semiclassical description is obtained if uniform Airy
approximations for S± (4.1) are used in the vicinities of the turning points.

E.B. gratefully acknowledges the support by The Royal Society, NATO and The Foreign and
Commonwealth Office Chevening Fellowship during her stay in Belfast.
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