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In this article, a numerical method to compute the electrostatic interaction energy and 
forces between many dielectric particles is presented. The computational method is based 
on a Galerkin approximation of an integral equation formulation, which is sufficiently 
general, as it is able to treat systems embedded in a homogeneous dielectric medium 
containing an arbitrary number of spherical particles of arbitrary size, charge, dielectric 
constant and position in the three-dimensional space. The algorithmic complexity is linear 
scaling with respect to the number of particles for the computation of the energy which 
has been achieved through the use of a modified fast multipole method. The method 
scales with the third power of the degree of spherical harmonics used in the underlying 
expansions, for general three-dimensional particle configurations. Several simple numerical 
examples illustrate the capabilities of the model, and the influence of mutual polarization 
between particles in an electrostatic interaction is discussed.

Crown Copyright © 2018 Published by Elsevier Inc. All rights reserved.

1. Introduction

In computational studies of charged particles, the description of a two-body electrostatic interaction often provides an 
adequate characterization of underlying physical phenomena. Examples include the investigation of certain aspects of cloud 
formation [1], the behavior of volcanic ash [2], and the stability of colloidal particles in dilute solutions [3]. Recent years have 
seen numerous solutions presented to address the problem of calculating electrostatic interactions between pairs of charged 
particles, covering materials of both dielectric [4–10] and metallic [11] nature. These solutions provide an excellent platform 
for understanding the fundamental and inherent peculiarities, such as the onset of attractive forces between like-charged 
particles under certain experimental conditions [12], and they also generate quantitatively accurate results that can be 
applied to the interpretation of experimental observations [6,13–16].
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However, in many cases a knowledge of two-body forces is not sufficient for a quantitative description of processes that 
involve interactions between more than two charged particles, and under these circumstances a solution to more complex 
systems where multiple particles interact would appear necessary. Examples include concentrated colloidal solutions [17], 
Coulombic crystals [18], electrostatic self-assembly [19] and, more recently, superlattices [20]. Generally, a two-body elec-
trostatic interaction arises when the presence of electric charge in one of the particles creates an electric field that induces 
a redistribution of surface charge and/or the polarization of bound charge on a second particle, which, in turn, generates its 
own electric field, thus prompting the same effect on the first particle. This iterative process results in an equilibrium state 
where both particles acquire a static charged configuration that can be either attractive or repulsive. It is anticipated that if 
a third particle is introduced to a two-body system, the aforementioned iterative process will take place between all three 
particles, potentially altering the equilibrium state of the system.

A number of solutions for calculating electrostatic interactions in collections of charged particles are described in the lit-
erature, with the majority relying on image charge methods [21–24], and several others on a multipole expansion approach 
[10,25,26]. The latter method has an advantage of providing a more physical picture of the electrostatic nature of the inter-
action in terms of how the redistribution of charge takes place. However, an accurate description of electrostatic interactions 
using these methods often becomes prohibitive in terms of computation time, particularly if the configuration of a model 
system requires the use of a large number of “images” or multipole terms. Indeed, describing electrostatic interactions in 
many-body dielectric systems is an intrinsically complex problem, as the induction of bound charges due to polarization 
effects in one particle is coupled with the same process in all others; as a consequence, each pairwise interaction cannot 
be resolved independently. In addition, simplification based on symmetry assumptions, that can be naturally imposed on a 
two-body system, rarely works if three or more particles are involved.

It is common to formulate these problems in terms of an integral equation, often referred to Boundary Integral Equation 
(BIE), of the second kind following a discretization by means of the Boundary Element Method (BEM) [27–30] which involves 
a mesh to approximate the geometry and low order basis functions. An alternative strategy is to rely on the basic translation 
operators of the fast multipole method methodology within the Method of Moments (MoM) [31–36]. Arbitrary shapes can 
be dealt within the framework of the scattering matrix formalism [37–40], which also allows for construction of highly 
efficient, general purpose algorithms—in the sense that it’s applicable beyond the Laplace case—as in the recent work by 
Ganesh and Hawkings [41].

In this work, a general solution based on an integral equation approach to the problem of calculating electrostatic interac-
tions between many dielectric spherical particles is presented. The developed solution treats an arbitrary number of particles 
of arbitrary size, charge, position and dielectric constant, embedded in a homogeneous medium. The method can be classi-
fied as a spectral Galerkin approximation of a second kind integral equation and thus stands on a solid mathematical ground 
through a variational formulation. Since the method is based on a spectral approach on each sphere, exponential conver-
gence is achieved for smooth solutions which is the case in our context. Further, no error is committed in approximating 
the geometry since no meshing is required, which also allows very efficient discretizations for polydisperse configurations, 
for example. It therefore combines the variational aspect of the BEM-method with the high order character of the MoM.

The complexity of the presented algorithm scales linearly with respect to the number of particles in the system, which 
has been achieved through the use of a modified fast multipole method (FMM) due to an equivalence between a surface 
charge represented by a truncated series of spherical harmonics and a corresponding multipole located at the sphere’s 
center. For a general three-dimensional particle configuration, the complexity scales with the fourth power of the degree of 
spherical harmonics used in the underlying expansions if no FMM is employed and is reduced to the third power with the 
more efficient FMM-embedding. This corresponds to the same asymptotic scaling as the method presented in [36]. Further, 
and in the very particular case when azimuthal symmetry can be assumed, quadratic scaling with the degree of spherical 
harmonics is obtained.

As presented here, the solution can provide an accurate quantitative description of the physical characteristics of the 
electrostatic problem, with an important feature of being computationally very efficient. In addition, it converges up to the 
point where particles touch and can therefore be utilized as a force field for particle dynamics simulations, as presented 
elsewhere [42].

2. Methodology

2.1. Geometric description and problem formulation

We begin with a geometric description of the system, namely a large collection of charged dielectric spheres. Let 
�1, . . . , �M be a collection of M non-overlapping spheres in R3 as illustrated in Fig. 1, where each �i has radius ri and is 
centered at xi ∈ R

3. The dielectric constant (relative permittivity) within each sphere �i is denoted by ki ≥ 1 and, corre-
spondingly, the dielectric constant of the surrounding medium is denoted by k0 ≥ 1. The piecewise dielectric constant as a 
function of space is then given by

k(x) = k0 +
∑

i∈{1,...,M}
(ki − k0)1�i (x), x ∈R

3,

where 1�i denotes the characteristic function of �i .



714 E.B. Lindgren et al. / Journal of Computational Physics 371 (2018) 712–731
Fig. 1. Geometric representation of a many-body problem.

Let �0 = R
3\ ∪M

i=1 �i be the complementary part to the spheres and set �i = ∂�i for i = 0, 1, . . . , M . Note that

�
c
0 = �1 ∪ . . . ∪ �M ,

�0 = �1 ∪ . . . ∪ �M .

We consider the case of electrostatic interaction between dielectric spheres, each carrying a free charge qi , uniformly 
distributed over its surface and represented by a surface density σ f ,i = qi/(4πr2

i ) ∈ R. Let σ f denote the global function 
such that

σ f (x) =
{
σ f ,i if x ∈ �i,

0 otherwise
.

The electrostatic potential � ∈ L2
loc(R

3) with �|�i ∈ H1(�i) for all i = 0, 1, . . . , M created by a density of free charge σ f

residing on the spheres satisfies the equation

�� = 0 in each �i, i = 0,1, . . . , M, (1)

[[�]] = 0 on �0, (2)

[[k∇�]] = 4π Kσ f on �0, (3)

where K denotes Coulomb’s constant, and [ [�] ] and [ [k∇�] ] are jumps defined by

[[�]]|�i (x) = �|�0(x)n0(x) + �|�i (x)ni(x),

[[k∇�]]|�i (x) = (k∇�)|�0(x) · n0(x) + (k∇�)|�i (x) · ni(x),

for all x ∈ �i , i = 1, . . . , M , and where ni(x) denotes the outward pointing normal to �i for x ∈ �i .
The total electrostatic energy of the system can then be written as

U (�,σ f ) = 1

2

∫
�0

σ f (s)�(s)ds. (4)

2.2. Representation in terms of integral equations

We now derive an integral equation formulation for the problem described by the partial differential equations (1)–(3). 
We begin by recalling some basic tools of potential theory (see for example [43]) that are needed in the derivation of the 
integral equation. In the sequel, H s(�) and Hs(�) denote the Sobolev space of order s on the domain � or the surface �; 
see [43, Chapter 2] for an introduction.
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2.2.1. Local representation
At a local level, i.e., for each sphere �i with i = 1, . . . , M , we first introduce the notion of a local single layer potential 

S̃i : H− 1
2 (�i) → H1(R3\�i) which is defined for any sphere �i by

(S̃iσi)(x) :=
∫
�i

σi(s)

|x − s| ds, ∀x ∈R
3\�i,

for any σi ∈ H− 1
2 (�i). Further, any harmonic function w in �i ∪ �

c
i that is continuous across the interfaces �i can be 

represented by the discontinuity in its normal derivative on �i across the interface by the local single layer potential

w = S̃iσi with σi = 1

4π
[[∇w]]. (5)

Now, the invertible local single layer boundary operator Si : H− 1
2 (�i) → H

1
2 (�i) can be introduced by restricting the single 

layer potential to �i :

(Siσi)(s) = (S̃iσi)|�i (s) =
∫
�i

σi(s′)
|s − s′| ds′, ∀s ∈ �i .

Indeed, the local single layer potential S̃i is continuous across the interface �i and the local single layer boundary operator 
is invertible.

Assume now that a Dirichlet trace λi ∈ H
1
2 (�i) on �i is given, then the harmonic extension in �i can be represented by 

the single layer potential S̃iσi in �i where σi satisfies the integral equation

Siσi = λi, on �i . (6)

Further, the interior Neumann trace (the outward pointing normal derivative) is given by

∇w|�i ·ni = (2π +D

i )σi, (7)

where D

i is the adjoint operator for the double layer boundary operator which, in turn, is self-adjoint and equal to

D

i = Di = − 1

2ri
Si (8)

for the simplified case of a sphere of radius ri . Therefore, the Dirichlet-to-Neumann map DtNi : H
1
2 (�i) → H− 1

2 (�i), which 
takes as input the Dirichlet trace λi and returns the interior Neumann trace ∇w|�i ·ni of the harmonic extension in �i is 
given by

λi 
→ DtNi(λi) =
(

2πS−1
i − 1

2ri

)
λi .

2.2.2. Global representation
Since the dielectric constant of the system is piecewise constant, it follows that the problem can be cast as an interface 

problem. As discussed above on the local level, it follows from potential theory that any function satisfying (1)–(3) can be 
represented by a global single layer potential

�(x) = (S̃Gν)(x) :=
∑

i∈{1,...,M}
(S̃iνi)(x), (9)

where S̃G : H− 1
2 (�0) → H1(R3\�0) is the global single layer potential and

νi = ν|�i = 1

4π
[[∇�]], on each �i . (10)

This allows the unknown � to be represented more economically in terms of ν , which, in turn, yields a more efficient 
numerical method for this particular example. Indeed, the function ν is only defined on the surface �0. In the following, 
we will derive an integral equation which determines uniquely the unknown density ν ∈ H− 1

2 (�0) by its local pieces νi on 
each �i . We will also refer to the global single layer boundary operator SG : H− 1

2 (�0) → H
1
2 (�0), associated with S̃G , and 

given by SGν = (S̃Gν)|�0 .
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2.2.3. Integral equation

First, denote the evaluation of � at each boundary �i , i ∈ {1, . . . , M}, by λi ∈ H
1
2 (�i), i.e.

λi(s) = �|�0(s) = (SGν)(s), ∀s ∈ �i . (11)

Second, and as explained above, � can be locally represented in �i (and only in �i ) by some local density σi which is 
supported only on �i , such that

�(x) = (S̃iσi)(x) :=
∫
�i

σi(s)

|x − s|ds, ∀x ∈ �i . (12)

The local density σi can be determined uniquely by the local integral equation (6) assuming for now that λi is known. 
Having a representation for � in the interior of �i , its Neumann trace on �i can be expressed following (7) and (8):

∇�|�i ·ni =
(

2π − 1

2ri
Si

)
σi . (13)

Using the discontinuity condition (3), the exterior (to �i) Neumann trace can be shown to be

∇�|�0 ·n0 = 1

k0
(4π Kσ f ,i − ki∇�|�i ·ni) (14)

on each �i , i ∈ {1, . . . , M}. However, it has already been shown in (9) that the solution � can be represented globally by 
the density νi defined in (10) and therefore, it holds locally on each �i that

νi = 1

4π
[[∇�]]|�i = K

k0
σ f ,i + k0 − ki

4πk0
∇�|�i ·ni = K

k0
σ f ,i + k0 − ki

4πk0

(
2π − 1

2ri
Si

)
σi

= K

k0
σ f ,i + k0 − ki

4πk0

(
2π − 1

2ri
Si

)
S−1

i λi,

by combining (12)–(14). Recalling (11), we can derive a globally coupled integral equation as given by[
I id − k0 − ki

4πk0

(
2πS−1

i − 1

2ri

)
SG

]
ν = Kσ f ,i

k0
(15)

on each �i .
Considering the energy functional, we observe that

U (�,σ f ) = 1

2

∫
�0

σ f (s)λ(s)ds = 1

2

M∑
i=1

∫
�i

σ f ,i(s)λi(s)ds. (16)

Note that the energy is easily computed starting from λ = SGν , and not from the ν directly, which is the unknown of 
equation (15). We can define an equivalent equation for ν by applying SG to both sides in (15):

λ − SGLλ = K

k0
SGσ f , (17)

where the local operator L j is defined by

(Lλ)|� j := L jλ j, (18)

L jλ j := k0 − k j

4πk0

(
2πS−1

j − 1

2r j

)
λ j. (19)

The integral formulation to the problem consists of solving (17) and then computing the energy following (16).

2.3. Discretization

After a short introduction to the basic elements of real spherical harmonics we will derive a Galerkin discretization of 
(17) based on series of truncated series of real spherical harmonics.
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2.3.1. Real spherical harmonics and quadrature
Denote by (Y�m)l∈N, −l≤m≤l the set of real spherical harmonics (for the unit sphere S2 in R3), normalized in such a way 

that

〈Y�m,Y�′m′ 〉S2 =
∫
S2

Y�m(s)Y�′m′(s)ds = δ��′δmm′ , (20)

where δn,m denotes the Kronecker delta-function. The spherical harmonics can be extended to the sphere ∂ Br(x0) with 
center x0 and radius r by considering the functions

Y�m

(
x − x0

r

)

and the scaled inner product

〈u, v〉∂ Br(x0) = 1

r2

∫
∂ Br(x0)

u(s) v(s)ds =
∫
S2

u(x0 + rs′) v(x0 + rs′)ds′.

The set of spherical harmonics on ∂ Br(x0) is also orthonormal with respect to 〈·, ·〉∂ Br (x0) , i.e.〈
Y�m

( · − x0

r

)
,Y�′m′

( · − x0

r

)〉
∂ Br(x0)

= 〈Y�m,Y�′m′ 〉S2 = δll′δmm′ .

Note that the purpose of the scaled inner product is to avoid the need to scale the basis functions by the factor 1/r, so 
that the same set of basis functions can be used on all spheres with different radii. The system of spherical harmonics is 
complete in L2(∂ Br(x0)) so that any function u ∈ L2(∂ Br(x0)) can be written as

u(x) =
+∞∑
�=0

�∑
m=−�

[u]m
� Y�m

(
x − x0

r

)
, (21)

with

[u]m
l =

〈
u,Y�m

( · − x0

r

)〉
∂ Br(x0)

=
∫
S2

u(x0 + rs)Y�m (s) ds. (22)

Since the integral in (22) can not always be computed exactly, we introduce a quadrature (or numerical integration) 
scheme by a set {sn, ωn}Ng

n=1 of integration points and weights, respectively, on the unit sphere and define by

〈u, v〉n,i :=
Ng∑

n=1

ωnu(xi + ri sn) v(xi + ri sn). (23)

In practice, we use the Lebedev quadrature [44] which can integrate couples of spherical harmonics exactly depending on 
the number of integration points. We refer to [45,46] for more details.

2.3.2. Galerkin approximation
Let VN,i be the set of functions spanned by spherical harmonics on �i of maximum degree N:

VN,i =
{

N∑
�=0

�∑
m=−�

[v]m
� Y�m

(
x − xi

ri

) ∣∣∣∣∣ [v]m
� ∈R

}
.

The (pure and impracticable) Galerkin approximation to (17) is then given by: on each �i , find λN |�i = λN,i ∈VN,i such that

∀v N,i ∈VN,i : 〈
λN,i − SGLλN , v N,i

〉
∂ Bri (xi)

=
〈

K

k0
SGσ f , v N,i

〉
∂ Bri (xi)

.

In practice however, the exact scalar product has to be replaced by the quadrature and the problem we are solving reads: 
on each �i , find λN |�i = λN,i ∈ VN,i such that

∀v N,i ∈VN,i : 〈
λN,i − SGLλN , v N,i

〉
n,i =

〈
K

k0
SGσ f , v N,i

〉
n,i

. (24)

Since each λN,i ∈ VN,i , it is represented by a set of coefficients [λi]m so that
�
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λN |�i (x) = λN,i(x) =
N∑

�=0

�∑
m=−�

[λi]m
� Y�m

(
x − xi

ri

)
. (25)

Therefore the function λN has a discrete representation by means of a vector λ ∈ R
M(N+1)2

consisting of all coefficients 
[λi]m

� .
The corresponding linear system, denoted here by

Lλ = f , (26)

is characterized by the entries of the solution matrix and the right-hand side

[Li j]mm′
��′ = 〈

δi jY�′m′ − SGL jY�′m′ ,Y�m
〉
n,i , (27)

[ f i]m
� =

〈
K

k0
SGσ f ,Y�m

〉
n,i

, (28)

which are derived as follows.
We now derive the expressions for the solution matrix entries as well as for the right hand side of the linear system. 

First, observe that the spherical harmonics are eigenfunctions of the local single layer operator S j , i.e.

S jY�m = 4πr j

2� + 1
Y�m, on � j .

As a consequence, we obtain

(L jY�′m′)

(
x − x j

r j

)
=

[
k0 − k j

4πk0

(
2πS−1

j − 1

2r j

)
Y�′m′

](
x − x j

r j

)
(29)

= �′ k0 − k j

4πk0r j
Y�′m′

(
x − x j

r j

)
, (30)

for all x ∈ � j . Second, the single layer potential of Y�′m′
(

x−x j
r j

)
in R3\�i is given by

(S̃ jY�′m′)(x) = 4πr j

2�′ + 1

(
r j

|x − x j|
)�′+1

Y�′m′
(

x − x j

|x − x j|
)

, ∀x ∈R
3\�i . (31)

Introducing

vij
n := xi + ri sn − x j, si j

n := vij
n

|vij
n |

and ti j
n := |vij

n |
r j

,

and combining (30) with (31), we obtain

(SGL jY�′m′)(xi + ri sn) = �′

2�′ + 1

k0 − k j

k0
(ti j

n )−(�′+1)Y�′m′(si j
n ). (32)

The numerical integration becomes

〈
SGL jY�′m′ ,Y�m

〉
n,i =

Ng∑
n=1

ωn Y�m(sn) (SGL jY�′m′)(xi + ri sn)

= �′

2�′ + 1

k0 − k j

k0

Ng∑
n=1

ωn Y�m(sn) (ti j
n )−(�′+1)Y�′m′(si j

n ).

Therefore, it holds that

[Lii]mm′
��′ = δ��′δmm′

(
1 − �

2� + 1

k0 − ki

k0

)
(33)

[Li j]mm′
��′ = −

Ng∑
n=1

[Ln
i j]mm′

��′ (ti j
n )−(�′+1) Y�′m′(si j

n ), j �= i, (34)

with

[Ln
i j]mm′

��′ := ωn
�′

2�′ + 1

k0 − k j

k0
Y�m(sn).
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Remark 2.1. In the case i = j, we have used an analytic expression, which is possible in this case; but note that numer-
ical integration can be used instead. The two approaches are identical as long as a sufficiently large number of Lebedev 
integration points is used, such that products of spherical harmonics, each of maximal degree N , are exactly integrated.

For the right-hand side, we similarly obtain

[ f i]m
� = [σ f ,i]0

0
4π Kri

k0
δ�0 + K

k0

∑
j∈{1,...,M}

j �=i

Ng∑
n=1

ωn(S̃ jσ f , j)(xi + ri sn)Y�m (sn) (35)

= [σ f ,i]0
0

4π Kri

k0
δ�0 +

∑
j∈{1,...,M}

j �=i

4π Kr j

k0

Ng∑
n=1

ωnY�m (sn) [σ f , j]0
0 (ti j

n )−1 Y00 (36)

= [σ f ,i]0
0

4π Kri

k0
δ�0 +

∑
j∈{1,...,M}

j �=i

Ng∑
n=1

[ f n
j ]m

� (ti j
n )−1, (37)

with

[ f n
j ]m

� := 4π Kr j

k0
ωn Y�m(sn) [σ f , j]0

0 Y00.

2.3.3. Energy
Having solved the linear system Lλ = f , the discrete approximation to the energy U (�, σ f ) can be computed following 

(16) as

U (λN ,σ f ) = 1

2

M∑
i=1

∫
�i

σ f ,i(s)λN,i(s)ds.

We first write σ f ,i ∈R in terms of spherical harmonics of degree 0, i.e.

σ f ,i = [σ f ,i]0
0 Y00

(
x − xi

ri

)
, with [σ f ,i]0

0 = 2
√

πσ f ,i . (38)

Then

U (λN ,σ f ) = 1

2

M∑
i=1

∫
�i

σ f ,i(s)λi(s)ds = 〈�,λ〉, (39)

where entries for the vector � are given by

[�i]m
� = δ�0

r2
i

2
[σ f ,i]0

0

and

〈�,λ〉 :=
∑

i∈{1,...,M}

N∑
�=0

�∑
m=−�

[�i]m
� [λi]m

� .

This corresponds to the total energy of the system. In order to study the interaction energy of the system, we first 
define for each �i the solution to (1)–(3) but only for a single sphere �i , neglecting the presence of all other spheres in the 
geometrical configuration. Thus, the solution on �i , denoted here by λ f ,i , is given by

λ f ,i = K

k0
Siσ f ,i,

such that the total self-energy of the system, given by the sum of the individual self-energies (Born energies), is defined as

U self(σ f ) = 1

2

M∑
i=1

∫
�i

σ f ,i(s)λ f ,i(s)ds = 〈�,λ f 〉. (40)
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Here, entries for the vector λ f are given by

[λ f ,i]m
� = δ�0

4πri K

k0
[σ f ,i]0

0.

The interaction energy is then given as the difference between the total energy and the self-energy of the system:

U int(λN ,σ f ) = U (λN ,σ f ) − U self(σ f ).

2.3.4. Force
The force acting on each of the spheres �k is the gradient of the (discrete) energy with respect to changes in the location 

of the center xk = (x1
k , x2

k , x3
k ) of �k , that is

F α
k = −∂xα

k
U (λN ,σ f ) = −∂xα

k
〈�,λ〉 = −〈�, ∂xα

k
λ〉,

where ∂xα
k

= ∂
∂xα

k
for α = 1, 2, 3. Note first that all σ f ,i and thus � do not depend on any position xk of the sphere �k , and 

second, the self-energy U self(σ f ) is also independent of xk .
Considering now the linear system Lλ = f , the derivative with respect to xk on both sides yields

∂xα
k
(Lλ) = (∂xα

k
L)λ + L(∂xα

k
λ) = ∂xα

k
f .

Regrouping the terms yields

L(∂xα
k
λ) = ∂xα

k
f − (∂xα

k
L)λ =: hα

k . (41)

Then,

F α
k = −〈�, L−1hα

k 〉 = −〈L−T �,hα
k 〉 = −〈s,hα

k 〉,
where s is a solution to the adjoint system

LT s = �. (42)

Thus the force acting on the k-th sphere is given by

Fk = (F 1
k , F 2

k , F 3
k ).

This approach is very efficient as the dual problem needs to be solved only once and not for each k.
It remains to characterize the different coefficients of hα

k . Applying the chain rule implies for all k = {1, . . . , M}:

∂xα
k
[Lii]mm′

��′ = 0

∂xα
k
[Li j]mm′

��′ = −
Ng∑

n=1

[Ln
i j]mm′

��′ ∂xα
k

(
(ti j

n )−(�′+1) Y�′m′(si j
n )

)

= −
Ng∑

n=1

[Ln
i j]mm′

��′ (ti j
n )−(�′+1)

(
∂xα

k
Y�′m′(si j

n ) − (�′ + 1)(ti j
n )−1 (∂xα

k
ti j
n )Y�′m′(si j

n )
)

, j �= i,

and

∂xα
k
[ f i]m

� = −
∑

j∈{1,...,M}
j �=i

Ng∑
n=1

[ f n
j ]m

� (ti j
n )−2(∂xα

k
ti j
n ).

Note that

∂xα
k

ti j
n = 1

r j
∂xα

k
|vij

n |,

and thus, using the notation vij
n = ((vij

n )1, (vij
n )2, (vij

n )3), we obtain

∂xα
k
|vij

n | = ∂xα
k

⎛
⎝ 3∑

β=1

(vij
n )2

β

⎞
⎠

1
2

= (vij
n )α

|vij
n |

∂xα
k
(xi + ri sn − x j)α = (vij

n )α

|vij
n |

f i jk,
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where

f i jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if k = i �= j

−1 if k = j �= i

0 if k = i = j

0 if k �= i and k �= j

.

Further computations show that

∂xα
k
Y�′m′(si j

n ) = 1

|vij
n |

∂sαY�′m′(si j
n )∂xα

k
vi j

n = 1

|vij
n |

∂sαY�′m′(si j
n ) f i jk,

where ∂sαY�′m′ (si j
n ) denotes the α-component of the gradient in Cartesian coordinates of Y�′m′ (s) for s ∈ S

2.

2.4. Fast multipole method implementation

The computation of one matrix–vector product Lλ scales as O(M2) due to the global potential SG in (24), which, in 
turn, shows that the matrix L is dense. We explain here how an adaptation of a Fast Multipole Method (FMM) [47,48] can 
be employed to reduce the computational cost of a matrix–vector product involving L and LT and effectively scales linearly 
with respect to M . Recall that the adjoint linear system (42) needs to be solved in order to compute the forces acting on 
the spheres. [39] In order to treat L and LT simultaneously, we first rewrite L as

L = I − �S�

where �, � are diagonal, and thus local, matrices with entries

[�ii]mm
�� = 1

r2
i

and [�ii]mm
�� = �

k0 − ki

k0

ri

4π
.

The resulting dense matrix S is given by

[Sij]mm′
��′ = r2

i

r2
j

〈
SGY�′m′ |� j ,Y�m

〉
n,i

= r2
i

r2
j

〈
S̃ jY�′m′ ,Y�m

〉
n,i

.

The motivation is that, on the continuous level, the single layer operator SG is self-adjoint on �0 using the usual L2(�0)

scalar product (and not the scaled version). In consequence, it can be verified that the dense matrix S is approximately 
symmetric in the sense that it is symmetric when the numerical integration becomes exact. Therefore, the transpose of L
can be approximated by

LT ≈ I − �S�,

where the error only depends on the error in numerical integration.
Similar as done for (27) in combination with (23), we derive

[(Sλ)i]m
� =

∑
j∈{1,...,M}

N∑
�′=0

�′∑
m′=−�′

[Sij]mm′
��′ [λ j]m′

�′ =
∑

j∈{1,...,M}

N∑
�′=0

�′∑
m′=−�′

r2
i

r2
j

〈
S̃ jY�′m′ ,Y�m

〉
n,i

[λ j]m′
�′

=
Ng∑

n=1

ωnY�m (sn)
∑

j∈{1,...,M}

N∑
�′=0

�′∑
m′=−�′

r2
i

r2
j

(S̃ jY�′m′)(xi + ri sn)[λ j]m′
�′

= r2
i

Ng∑
n=1

ωnY�m (sn)�(xi + ri sn),

with

�(x) =
∑

j∈{1,...,M}

1

r2
j

N∑
�′=0

�′∑
m′=−�′

[λ j]m′
�′ (S̃ jY�′m′)(x).

Applying (31), we further develop
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�(x) =
∑

j∈{1,...,M}

1

r2
j

N∑
�′=0

�′∑
m′=−�′

[λ j]m′
�′

4πr j

2�′ + 1

(
r j

|x − x j|
)�′+1

Y�′m′
(

x − x j

|x − x j|
)

(43)

=
∑

j∈{1,...,M}

N∑
�′=0

�′∑
m′=−�′

[� j]m′
�′

1

|x − x j|(�′+1)
Y�′m′

(
x − x j

|x − x j|
)

(44)

with

[� j]m′
�′ = 4π

2�′ + 1
r�′

j [λ j]m′
�′ .

Therefore, evaluating � at all integration points xi + ri sn on each sphere i ∈ {1, . . . , M} can be interpreted as evaluating the 
potential of M multipoles which are located at x j with multipolar moments [� j]m′

�′ at the integration points xi + ri sn .
We note that, as explained in Remark 2.1, the expression (34) for i = j approximates the value of (33) by numerical 

integration, and it is exact for a large enough number of Lebedev points. We therefore only use expression (34) even for 
i = j if we use the FMM-framework.

Standard FMM-libraries do not consider arbitrary multipolar expansions as input. Typically, only point-charges are con-
sidered, although in some cases dipoles can also be treated. Since the degree N of spherical harmonics is arbitrary in the 
work presented here, such standard libraries can not be used. However, libraries can be adapted with some effort. Ac-
cordingly, we have modified the library ScalFMM [49] as explained in the following. Let P denote the degree of spherical 
harmonics used in the FMM, then, relying on standard notation within the FMM-framework, see [50] for example, the 
following changes need to be introduced:

o Replace the P2M-operator by a M2M-operator, which maps each multipolar expansion of the form (44) (thus of de-
gree N) at the scattered locations {x j}M

j=1 in each box to a multipolar expansion of degree P centered at the box. The 
P2M-operator is in this case a special case of N = 0.

o Replace the P2P-operator by a M2P-operator according to the evaluation of (44).

Once these changes are introduced, one can use the FMM-framework to obtain a linear scaling algorithm for each matrix–
vector product Lλ within an iterative solution algorithm, such as GMRes for example, to solve the linear system (26) as well 
as the adjoint linear system (42) providing linear scaling for the computation of the interaction energy. We will analyze the 
performance of the algorithm, and in particular the FMM, in the next section.

3. Numerical results

In the following a series of benchmark tests are first presented, covering the performance of the code as a function of the 
number of particles (M) and the degree of spherical harmonics (N) utilized in the truncated series. Afterwards, the focus 
is turned to the presentation of a number of basic examples of many-body interaction that clearly illustrate the capability 
of the model introduced in this paper. In the first series of examples, the number of particles has been restricted to M = 3
to retain clarity of interpretation. For simplicity, various physical quantities involved in these calculations are taken to be 
dimensionless, with the Coulomb’s constant being replaced by unity. Finally, an example with a large number of spheres is 
presented, in the form of a calculation for the halite (‘rock salt’) lattice of sodium chloride (NaCl) and an estimation of its 
Madelung constant. In all calculations of the electrostatic force, the convention of a negative value denoting an attractive 
force and a positive value denoting an repulsive force is adopted.

3.1. Timing and scaling

The model introduced in section 2 has been implemented in a MATLAB code, and the performance of the later is 
discussed next, particularly with respect to scaling properties as a function of the number of spheres M and the degree 
of spherical harmonics N utilized in the truncated series. The FMM-framework is based on the ScalFMM-library which 
is called from MATLAB by means of the MATLAB MEX-compiler. In this way, the computationally most expensive part is 
externalized and complied C++ code is actually called from MATLAB. All timing calculations have been performed on a single 
desktop-class computer, with a Intel Core i7-3820@3.60 GHz processor, 16 GB of DDR3@1333 MHz, running a GNU/Linux 
based operating system. Since computation time can be sensitive to background activities of the operating system, the 
calculations were repeated ten times, hence standard deviations are shown as error bars in the resulting figures.

To address the behavior of the code with respect to the number of spheres, a system that grows linearly with the 
progressive addition of identical spheres is considered first, and the results are plotted in Fig. 2. A calculation for systems 
with a large number of spheres benefits from the implementation of the Fast Multipole Method (FMM), introduced in 
section 2.4. When the number of spheres is small, a calculation that does not implement the FMM performs better; however, 
as the number of spheres in the system increases, a crossover between the two curves occurs at about M = 50 (for this 
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Fig. 2. (a) The wall time (elapsed real time) as a function of the number of spheres M in the system. Although virtually indistinguishable, the elapsed time 
in the FMM calculation varies from ≈ 0.8 to 1.2 seconds as M increases; (b) log–log plot of the calculation performed without FMM, showing a quadratic 
scaling profile.

Fig. 3. (a) The wall time as a function of the number of spheres M in the system, for various curves representing different Tree Heights in the FMM 
calculation; (b) log–log plot of the piecewise composition of parabolic profiles, each corresponding to a particular value of Tree Height, showing that a 
regular effective linear scaling can be obtained. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

particular example), and the FMM calculation becomes faster. Fig. 2(b) clearly shows that the calculation scales quadratically 
when FMM is not used.

A subtle detail of the FMM-algorithm is that it is based on an octree-structure of the bounding box containing all 
particles where the finest granularity determines the separation between the far-field and the near-field. As the number of 
dielectric spheres in the system grows, one needs to carefully adapt the number of levels in the octree so that the number of 
spheres remains asymptotically uniform in the leaves in order to prevent the near-field computations growing quadratically. 
In consequence, linear scaling can only be achieved if the number of levels is adapted to the number of spheres in the 
leaves. Accordingly, a quasi-linear curve that is in reality a piecewise composite of quadratic profiles, each corresponding 
to a different Tree Height, can be obtained. To illustrate this, consider a system that assumes the halite cubic structure 
of sodium chloride, where each positive particle is surrounded by six negative particles and vice versa. For simplicity, the 
spheres were made identical with regard to their dielectric constant, size and charge. As shown in Fig. 3(a), each level of 
Tree Height performs best at a particular segment of the x-axis, being surpassed by the next level when the magnitude of 
M has increased sufficiently. Fig. 3(b) shows the quasi-linear curve obtained by combining each segment calculated with 
the optimum corresponding Tree Height.

The behavior of the code with respect to the degree of spherical harmonics N utilized in the truncated series is accessed 
in Fig. 4, where a three particle case shown later in Fig. 7 is considered. Since this particular case exhibits a perfect linear 
geometry, an additional simplification can be imposed from the azimuthal symmetry of the system, which is that the spher-
ical harmonics utilized in the truncated series present no φ-dependence so that only the terms with m = 0 matter for all �. 
For the majority of problems, however, this later simplification cannot be made and the full set of spherical harmonics needs 
to be considered. Fig. 4(a) illustrates the Wall time of the calculations with and without exploiting the azimuthal symmetry. 
While the calculation where the full set of spherical harmonics is considered scales as N4, the use of symmetry reduces it to 
a quadratic scaling, as shown in Fig. 4(b). In absolute terms, the use of high orders of spherical harmonics inevitably causes 
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Fig. 4. (a) The wall time as a function of the degree of spherical harmonics utilized in the truncated series. Although virtually indistinguishable, the elapsed 
time in the axisymmetric calculation varies from ≈ 0.03 to 3 seconds; (b) log–log plot of both curves showing that an imposition of symmetry reduces the 
scaling profile from ≈ N4 to N2.

the code to run considerably slower, especially when no symmetry can be imposed. The quartic scaling in N corresponds 
to a quadratic scaling in the number of degrees of freedom per sphere which is a natural scaling for a spherical harmonics 
Spectral method discretizing a two-dimensional manifold. However, the situations, where the use of such high orders is 
required, are, in fact, limited. For two-body systems, it has been shown already [51], considering a particular convergence 
criterion, how the required number of terms in a truncated series generally depends on parameters of the system, namely 
the particles’ dielectric constant, charge and radius, and the inter-particle separation distance. The conclusions from this 
study can be extrapolated to a many-body system, if one takes into account each pairwise interaction separately. Generally, 
higher-order terms are required if the separation between any two particles is very small (approximately one tenth of the 
radii or less), if the ratio of radii and the ratio of dielectric constants are sufficiently large, or if a combination of both these 
conditions is present.

These were considerations for configurations with only a few particles. If one considers larger systems where the FMM 
is employed, the scaling with respect to N is determined by the degree of spherical harmonics that is used within the FMM 
to represent the local and multipolar expansions. We use the FMM with an internal degree of spherical harmonics that is 
proportional to N , which then results in a cubic scaling of the algorithm with respect to N .

3.2. Nonadditivity of the electrostatic force in many-body systems

As Coulomb’s law obeys the principle of superposition, for the case of a system containing any number of uniformly 
charged non-polarizable spherical particles, it is straightforward to recognize that the total electrostatic force acting on a 
specific particle is equal to the sum of forces corresponding to pairwise interactions between such particle and all other 
particles in the system.

Consider the case of three particle interaction depicted in Fig. 5, where each particle is positioned at a vertex of an 
equilateral triangle. All particles are non-polarizable (k1 = k2 = k3 = 1), equal-sized with a nominal radius of 1, and separated 
by a distance s = 1; the yellow particle has a nominal charge of 10, and the dark blue particles have a nominal charge of 
−10. The top panel in Fig. 5 presents isolated pair interactions, below which the overall interaction between three particles 
is shown. In this case, the x and y components of the total force acting on each particle are the sum of the x and y
components of the force due to the corresponding pair interactions. Therefore, for a system consisting of non-polarizable 
particles or point charges, the principle of superposition holds and the force is said to be additive.

Consider now the case illustrated in Fig. 6, which has the same parameters as the system addressed in Fig. 5, except 
for the dielectric constant of the particles, which is now equal to 20. Contrary to the previous case, where the particles 
are non-polarizable, Fig. 6 shows that when the particles have the ability to be polarized, the electrostatic force does not 
obey the principle of superposition and becomes nonadditive. Accordingly, in each of the isolated pair interactions, depicted 
in the upper panel in Fig. 6, two particles become polarized by one another and assume a surface charge distribution 
that corresponds to the equilibrium configuration. However, when a third particle is added to the system it disrupts the 
distribution of charge on the pair, and the system as a whole assumes a new equilibrium distribution of surface charge, as 
shown in the lower panel in Fig. 6. In other words, the charge distribution on a particle in a pair interaction differs from 
that in the presence of additional particles, which leads to modification of the force components so that the electrostatic 
force is now characterized as nonadditive. This is evident from Fig. 6 in which the actual force is compared to the force 
predicted for the case when the principle of superposition is obeyed. Such behavior of the electrostatic force is similar to 
the induction component of intermolecular forces, which is recognized as being strongly nonadditive [52].
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Fig. 5. Schematic illustration of the electrostatic interaction between three non-polarizable particles placed at the vertices of an equilateral triangle of side 
h = 3. The three upper diagrams represent isolated pairwise interactions in the absence of the third particle, whose phantom location is shown as a dashed 
circle, and the bottom diagram represents the overall interaction, involving all three particles. The values of the x and y components of the force are 
shaded in grey, while the total force is denoted in black. Accordingly, the arrows represent unit vectors depicting the direction of the force (black) and each 
component (grey).

3.3. Neutral–charged particle interaction

In a neutral particle − charged particle interaction, the existence of electrostatic effects depends on polarizability of the 
neutral particle, which must have the dielectric constant k greater than unity. Consider the case shown in Fig. 7, where 
three particles are placed in a linear geometry, the central particle carries a positive charge and two neutral particles are 
equidistant on either side. When the particles have the dielectric constant of k = 1, i.e. when they are non-polarizable, 
no bound charge is induced. As the value of k is gradually increased, i.e. as the particles become more polarizable, bound 
charge is induced and the interactions become progressively more attractive. The surface charge density map in Fig. 7 shows 
that the electric field created by the positive free charge on the central particle induces negative bound charge on the left-
and right-hand particles, particularly in the areas of close proximity to the central particle. Since the left and right particles 
are neutral their total charge remains zero and the off-set of positive bound charge emerges on the hemisphere facing 
away from the central particle. The electric fields created by the induced bound charges on the left and right particles also 
polarize the central particle, which becomes more positively charged in the areas of close proximity to the neighboring
neutral particles. The overall effect is that the total force on the left particle is attractive and directed towards the other 
two particles. By symmetry, the total force on the right particle is also attractive and acting with equal magnitude in the 
opposite direction; the total force on central particle is zero.

3.4. Opposite-charge interaction

In this second example, shown in Fig. 8, three interacting particles in a linear configuration are charged. The central 
particle is positively charged, and the two particles on either side are equidistant and carry negatives charge. If the particles 
are non-polarizable (k = 1), the electrostatic interaction is always attractive and described accurately by Coulomb’s law. If k
is greater than unity bound charges are induced on the particles, similar to the case shown in Fig. 7, and as the value of k
is increased the interaction becomes more attractive. For the case shown in Fig. 8(b) the central particle carries significantly 
less charge than the other two particles showing that a critical value of k is now required for the onset of an attractive 
interaction. If k ≤ 10, the combination of an opposite (free) charge interaction and additional attraction due to polarization 
effects is not sufficient to balance the repulsion between the negative free charges on the left- and right-hand particles; 
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Fig. 6. Schematic illustration of the electrostatic interaction between three polarizable particles with dielectric constants k1 = k2 = k3 = 20. Distribution of 
the total surface charge density is shown by variation of color. The values of the x and y components of the force are shaded in grey, while the total force 
is denoted in black. The values in brackets give the absolute magnitude of the force if the principle of superposition was obeyed.

Fig. 7. The total electrostatic force F acting on the left particle as a function of the surface-to-surface separation s and the dielectric constant of the particles, 
for the case of neutral (green) – charged (yellow) particle interaction. The particle at the center has a nominal charge of +1, whilst the left- and right-hand 
particles are neutral; the particles are equal-sized, with a nominal radius of 1. Also shown is a linear geometry of three body interaction, with the total 
surface charge density (charge per unit area) mapped out on each particle for the case of k1 = k2 = k3 = 20 and s = 0.2.

therefore, the overall force on the left-hand particle is repulsive. However, when k ≥ 20, polarization effects dominate 
and promote the onset of an overall attractive interaction at sufficiently short inter-particle separation. As in the previous 
example, in all cases due to symmetry the total force on the central particle remains zero, but the force on the left- and 
right-hand particles, which has the same magnitude and acts in opposite directions, changes.
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Fig. 8. The total electrostatic force F acting on the left particle as a function of the surface-to-surface separation s and the dielectric constant of the particles, 
for a case of opposite-charge interaction: (a) the central particle has a nominal charge of +1, and the left- and right-hand particles have a nominal charge 
of −1; (b) the central particle has a nominal charge of +0.01, and the left and right particles have a nominal charge of −10. The particles are equal-sized, 
with a nominal radius of 1. Inset in (b) shows a linear geometry of three body interaction, with the total surface charge density mapped out on each 
particle for the case of k1 = k2 = k3 = 20 and s = 0.2.

Fig. 9. The total electrostatic force F acting on the left particle as a function of the surface-to-surface separation s and the dielectric constant of the particles, 
for the case of like-charge interaction between three particles in linear geometry: (a) particles are identical, with a nominal charge of +1 and nominal 
radius of 1; (b) particles have a nominal charge of +1, the central particle has a radius of 3, and the left and right particles have a radius of 1. Inset in (b) 
shows a linear geometry of three body interaction, with the total surface charge density mapped out on each particle for the case of k1 = k2 = k3 = 20 and 
s = 0.2.

3.5. Like-charge interaction

Finally, consider the case of three interacting particles placed in a linear configuration, where they all carry a net positive 
charge, i.e. they are like-charged. Fig. 9(a) shows that when the particles are identical, which includes the magnitude and 
sign of charge, the electrostatic interaction is always repulsive no matter how polarizable the particles are. In this case, 
polarization effects merely serve to weaken the electrostatic repulsion between particles. Therefore, as k increases the 
magnitude of the repulsive force decreases, and by changing one of the parameters of the problem this behavior can be 
moderated. For example, in Fig. 9(b) the central particle is three times larger than the particles on each side, so the particles 
have different distribution of surface charge. Higher charge density on the smaller particles induces negative bound charge 
on the central particle, especially in the areas closest to either particle. In contrast, the particles on each side become more 
positively charged in the areas nearest to the central particle. The overall effect is that, at sufficiently short separations, 
an overall attractive interaction between the particles prevails, even though they are all like-charged. A similar scenario 
involving only two particles has been described elsewhere [5,51].

Fig. 10 also addresses an example of like-charge interaction, but this time the particles are placed in a triangular geome-
try. Similar to the linear case, the particles are identical, with the result that the electrostatic interaction is always repulsive, 
with polarization merely weakening the magnitude of the repulsion. However, variation in one of the parameters, in this 
case the amount of charge on each particle, leads to the emergence of an attractive interaction at sufficiently short separa-
tions, as shown in Fig. 10(b). Note that polarization effects are only significant at short separation distances; typically, the 
dipole, quadrupole, octupole and higher order multipole interactions diminish more rapidly than the monopole (Coulomb) 
term as the separation between particles increases. Whilst the monopole contribution to the force is inversely proportional 
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Fig. 10. The total electrostatic force F acting on the left particle as a function of the surface-to-surface separation s, for the case of like-charge interaction 
between three particles in triangular geometry: (a) particles are identical, with a nominal charge of +1 and nominal radius of 1; (b) particles have a 
nominal radius of 1, the left particle has a nominal charge of +3, and particles on the right each have a nominal charge of +1. Inset in (b) shows a 
triangular geometry of three body interaction, with the total surface charge density mapped out on each particle for the case of k1 = k2 = k3 = 20 and 
s = 0.2.

Fig. 11. Halite (‘rock-salt’) structure of sodium chloride (NaCl), where the sodium cation is depicted in yellow and chlorine anion in blue. Shown are the 
first three cubic structures starting with the unit cell.

to the square of the distance between interacting particles, for polarization terms there is a higher order inverse relation 
between separation and force.

3.6. Halite lattice and estimation of the Madelung constant

Sodium chloride (NaCl) occurs naturally in a (6,6)-coordinate halite (‘rock-salt’), cubic structure, where each cation is 
surrounded by six anions and vice versa [53], as illustrated in Fig. 11. For a crystal, the lattice energy is defined as the 
difference in electrostatic potential energy between the salt packed in solid form and its isolated constituents, in this 
case Na+ and Cl− . If the constituents interact to form ion pairs instead of a lattice, then the energy released would be 
considerably smaller than that observed for the lattice energy. This difference is reflected in the Madelung constant, which 
is the ratio between the lattice energy per mol of a substance in a crystal form and the potential energy per mol of isolated 
ion pairs [54]. The knowledge of the Madelung constant for crystals is important as it can be used to estimate lattice 
energies directly by treating the crystal’s constituents as point charges [55]. The Madelung constant also reflects the type of 
lattice structure present in a crystalline form.

The potential energy of a finite unit cell of a crystal is expected to differ from the lattice energy of the infinite bulk struc-
ture. Fig. 12 shows that as the number of atoms in the unit cell increases the potential energy of the unit cell approaches 
the value of the total lattice energy. The estimated lattice energy and Madelung constant for sodium chloride are plotted 
as a function of the number of particles M in the unit cell indicating that as M increases, the estimated lattice energy and 
Madelung constant asymptotically approach their reference values [56] of 750.619 kJ mol−1 and 1.74756, respectively.

4. Conclusions

A general solution to the problem of calculating many-body electrostatic interactions between collections of charged 
dielectric particles is presented. The model quantitatively and accurately describes the mutual polarization experienced by 
interacting particles, and it is particularly suitable for calculating electrostatic interactions in systems that strongly deviate 
from purely Coulombic behavior. Physically meaningful interpretation of electrostatic self-assembly and ordering of colloidal 
particles, formation of structurally diverse binary nanocrystal superlattices [58,20], crystallization of deformable objects, such 
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Fig. 12. Semi-log plot of the estimated lattice energy (a) and estimated Madelung constant (b), as function of the number of particles, M , in the structure. 
The sodium cation is represented by a sphere of radius 1.02 Å [56] carrying a positive elementary charge, and the chlorine anion is represented by a sphere 
of radius 1.81 Å [56] carrying a negative elementary charge. Unlike the previous calculations presented here, these results are not dimensionless, hence, 
the actual value of Coulomb’s constant has been used. The lattice energy is presented as a Coulombic component added by the Born force component 
from Born–Landé equation, the latter being proportional to B/hn , where B is a repulsion coefficient, h is the internuclear distance, and n is the Born 
exponent [57].

as micelles and globular proteins, that can adapt their structure to the local coordination environment, depends strongly 
on accurate description of many-body effects and non-pairwise interactions. Inclusion of many-body interactions, using the 
proposed model, will aid prediction and precise control of nanoparticle size, shape and composition, which generally affect 
electronic, optical and magnetic properties of the nanoparticle superlattice. Finer control of these properties is an important 
step towards the design of metamaterials with pre-defined physical characteristics.

Linear scaling of the presented many-body problem for the interaction energy with the number of particles in a system 
ensures fast and efficient computation and a good convergence of the solution up to the point where particles touch. A full 
linear scaling implementation of the forces is a more delicate task that we are focusing on in future.

The method turns out to be very efficient due to a direct interplay between surface density approximations on the 
spheres in terms of truncated spherical harmonics series and an equivalent multipolar distribution at the sphere’s center. 
The method is based on a Galerkin approach and thus stands on a solid mathematical ground. Further, no error is committed 
in approximating the geometry since no meshing of the particles is required, which, in turn, allows also very efficient 
discretizations for polydisperse configurations. We also want to emphasize that the method is a high-order spectral method 
so that exponential convergence is achieved for smooth solutions which is the case in our context. Further, the variational 
setting allows to explore the self-adjointness of the single layer boundary operator and to finally compute the forces acting 
on the spheres also efficiently.

This makes it suitable for use as a force field in many-body classical particle dynamics. This capability of the model opens 
up new application areas related to classical dynamics simulations exploring the consequences of changing the charge and 
the dielectric constant of nanoparticles on electrostatic assembly in the absence of other external influences. Whitesides 
and co-workers have produced extensive observations of contact electrification to create two-dimensional model electro-
static self-assembly [18,19]. These observations are related to experiments on the assembly of polymer particles of varying 
size and composition that have been subjected to tribocharging to acquire a positive or negative charge. A consequence of 
the resultant electrostatic interactions is self-organization of the charged particles into a range of lattice structures. Our clas-
sical dynamics simulations [42], based on the proposed many-body solution, successfully reproduced many of the observed 
patterns of behavior. This study reveals the importance of taking many-body interactions into account, and the calculations 
also show how particle polarizability influences the assembly process.

Acknowledgements

EBL thanks the University of Nottingham, where he worked on part of his contributions to the manuscript. EB acknowl-
edges the financial support of an ERC Consolidator grant (Project-ID 307755-FIN). AJS would like to thank the Leverhulme 
Trust for the award of an Emeritus Fellowship. BS acknowledges the funding from the German Academic Exchange Service 
(DAAD) from funds of the “Bundesministeriums für Bildung und Forschung” (BMBF) for the project Aa-Par-T (Project-ID 
57317909). YM acknowledges the funding from the PICS-CNRS (Project N◦ 230509) as well as the PHC PROCOPE 2017 
(Project N◦ 37855ZK) and part of this work has benefited from French state funding managed by CALSIMLAB and the ANR 
within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02.

References

[1] B. Tinsley, The global atmospheric electric circuit and its effects on cloud microphysics, Rep. Prog. Phys. 71 (6) (2008) 066801, https://doi .org /10 .1088 /
0034 -4885 /71 /6 /066801.

https://doi.org/10.1088/0034-4885/71/6/066801
https://doi.org/10.1088/0034-4885/71/6/066801


730 E.B. Lindgren et al. / Journal of Computational Physics 371 (2018) 712–731
[2] T. Mather, R. Harrison, Electrification of volcanic plumes, Surv. Geophys. 27 (4) (2006) 387–432, https://doi .org /10 .1007 /s10712 -006 -9007 -2.
[3] Y. Liang, N. Hilal, P. Langston, V. Starov, Interaction forces between colloidal particles in liquid: theory and experiment, Adv. Colloid Interface Sci. 134 

(2007) 151–166, https://doi .org /10 .1016 /j .cis .2007.04 .003.
[4] H. Ohshima, Electrostatic interaction between a sphere and a planar surface: generalization of point-charge/surface image interaction to particle/surface 

image interaction, J. Colloid Interface Sci. 198 (1) (1998) 42–52, https://doi .org /10 .1006 /jcis .1997.5240.
[5] E. Bichoutskaia, A.L. Boatwright, A. Khachatourian, A.J. Stace, Electrostatic analysis of the interactions between charged particles of dielectric materials, 

J. Chem. Phys. 133 (2010) 024105, https://doi .org /10 .1063 /1.3457157.
[6] H. Zettergren, B.O. Forsberg, H. Cederquist, Are single C60 fullerenes dielectric or metallic? Phys. Chem. Chem. Phys. 14 (47) (2012) 16360–16364, 

https://doi .org /10 .1039 /c2cp42884a.
[7] V. Munirov, A. Filippov, Interaction of two dielectric macroparticles, J. Exp. Theor. Phys. 117 (5) (2013) 809–819, https://doi .org /10 .1134 /

S1063776113130050.
[8] T. Murovec, C. Brosseau, Electrostatics of two charged conducting ellipsoids, Appl. Phys. Lett. 102 (8) (2013) 084105, https://doi .org /10 .1063 /1.4793664.
[9] A. Khachatourian, H.-K. Chan, A.J. Stace, E. Bichoutskaia, Electrostatic force between a charged sphere and a planar surface: a general solution for 

dielectric materials, J. Chem. Phys. 140 (7) (2014) 074107, https://doi .org /10 .1063 /1.4862897.
[10] P. Linse, Electrostatics in the presence of spherical dielectric discontinuities, J. Chem. Phys. 128 (21) (2008) 214505, https://doi .org /10 .1063 /1.2908077.
[11] J. Lekner, Electrostatics of two charged conducting spheres, Proc. R. Soc. A 468 (2012) 2829–2848, https://doi .org /10 .1098 /rspa .2012 .0133.
[12] A.J. Stace, A.L. Boatwright, A. Khachatourian, E. Bichoutskaia, Why like-charged particles of dielectric materials can be attracted to one another, J. 

Colloid Interface Sci. 354 (1) (2011) 417–420, https://doi .org /10 .1016 /j .jcis .2010 .11.030.
[13] E.B. Lindgren, I.N. Derbenev, A. Khachatourian, H.-K. Chan, A.J. Stace, B.E., Electrostatic self-assembly: understanding the significance of the solvent, 

J. Chem. Theory Computat. 14 (2018) 905–915.
[14] E.B. Lindgren, B. Stamm, H.-K. Chan, Y. Maday, A.J. Stace, E. Besley, The effect of like-charge attraction on aerosol growth in the atmosphere of titan, 

Icarus 291 (2017) 245–253, https://doi .org /10 .1016 /j .icarus .2016 .12 .013.
[15] A.J. Stace, E. Bichoutskaia, Treating highly charged carbon and fullerene clusters as dielectric particles, Phys. Chem. Chem. Phys. 13 (41) (2011) 

18339–18346, https://doi .org /10 .1039 /c1cp21573f.
[16] A. Stace, E. Bichoutskaia, Absolute electrostatic force between two charged particles in a low dielectric solvent, Soft Matter 8 (23) (2012) 6210–6213, 

https://doi .org /10 .1039 /c2sm25602a.
[17] M. Brunner, J. Dobnikar, H.-H. von Grünberg, C. Bechinger, Direct measurement of three-body interactions amongst charged colloids, Phys. Rev. Lett. 

92 (7) (2004) 078301, https://doi .org /10 .1103 /PhysRevLett .92 .078301.
[18] B.A. Grzybowski, A. Winkleman, J.A. Wiles, Y. Brumer, G.M. Whitesides, Electrostatic self-assembly of macroscopic crystals using contact electrification, 

Nat. Mater. 2 (4) (2003) 241–245, https://doi .org /10 .1038 /nmat860.
[19] L.S. McCarty, A. Winkleman, G.M. Whitesides, Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrifica-

tion, Angew. Chem., Int. Ed. Engl. 46 (1–2) (2007) 206–209, https://doi .org /10 .1002 /anie .200602914.
[20] E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’brien, C.B. Murray, Structural diversity in binary nanoparticle superlattices, Nature 439 (7072) (2006) 

55–59, https://doi .org /10 .1038 /nature04414.
[21] R. Messina, Image charges in spherical geometry: application to colloidal systems, J. Chem. Phys. 117 (24) (2002) 11062–11074, https://doi .org /10 .

1063 /1.1521935.
[22] Z. Xu, Electrostatic interaction in the presence of dielectric interfaces and polarization-induced like-charge attraction, Phys. Rev. E 87 (1) (2013) 013307, 

https://doi .org /10 .1103 /PhysRevE .87.013307.
[23] J. Qin, J. Li, V. Lee, H. Jaeger, J.J. de Pablo, K.F. Freed, A theory of interactions between polarizable dielectric spheres, J. Colloid Interface Sci. 469 (2016) 

237–241, https://doi .org /10 .1016 /j .jcis .2016 .02 .033.
[24] P.T. Metzger, J.E. Lane, Electric potential due to a system of conducting spheres, J. Appl. Phys. 2 (2009) 32–48, https://doi .org /10 .2174 /

1874183500902010032.
[25] H. Clercx, G. Bossis, Many-body electrostatic interactions in electrorheological fluids, Phys. Rev. E 48 (4) (1993) 2721, https://doi .org /10 .1103 /PhysRevE .

48 .2721.
[26] B. Kemp, J. Whitney, Electrostatic adhesion of multiple non-uniformly charged dielectric particles, J. Appl. Phys. 113 (4) (2013) 044903, https://doi .org /

10 .1063 /1.4789014.
[27] H. Hoshi, M. Sakurai, Y. Inoue, R. Chûjô, Medium effects on the molecular electronic structure. I. the formulation of a theory for the estimation of a 

molecular electronic structure surrounded by an anisotropic medium, J. Chem. Phys. 87 (2) (1987) 1107–1115.
[28] R. Bharadwaj, A. Windemuth, S. Sridharan, B. Honig, A. Nicholls, The fast multipole boundary element method for molecular electrostatics: an optimal 

approach for large systems, J. Comput. Chem. 16 (7) (1995) 898–913.
[29] K. Barros, D. Sinkovits, E. Luijten, Efficient and accurate simulation of dynamic dielectric objects, J. Chem. Phys. 140 (6) (2014) 064903.
[30] P. Cazeaux, O. Zahm, A fast boundary element method for the solution of periodic many-inclusion problems via hierarchical matrix techniques, ESAIM 

Proc. Surv. 48 (2015) 156–168.
[31] D. McKenzie, R. McPhedran, G. Derrick, The conductivity of lattices of spheres—II. The body centred and face centred cubic lattices, Proc. R. Soc. Lond. 

A 362 (1978) 211–232.
[32] R. McPhedran, D. McKenzie, The conductivity of lattices of spheres I. The simple cubic lattice, Proc. R. Soc. Lond. A 359 (1978) 45–63.
[33] A. Sangani, A. Acrivos, The effective conductivity of a periodic array of spheres, Proc. R. Soc. Lond. A 386 (1983) 263–275.
[34] K. Hinsen, B. Felderhof, Dielectric constant of a suspension of uniform spheres, Phys. Rev. B 46 (20) (1992) 12955.
[35] L. Greengard, M. Moura, On the numerical evaluation of electrostatic fields in composite materials, Acta Numer. 3 (1994) 379–410.
[36] Z. Gan, S. Jiang, E. Luijten, Z. Xu, A hybrid method for systems of closely spaced dielectric spheres and ions, SIAM J. Sci. Comput. 38 (3) (2016) 

B375–B395.
[37] J. Lai, M. Kobayashi, L. Greengard, A fast solver for multi-particle scattering in a layered medium, Opt. Express 22 (17) (2014) 20481–20499.
[38] J. Lai, M. Kobayashi, A. Barnett, A fast and robust solver for the scattering from a layered periodic structure containing multi-particle inclusions, J. 

Comput. Phys. 298 (2015) 194–208.
[39] Z. Gimbutas, L. Greengard, Fast multi-particle scattering: a hybrid solver for the Maxwell equations in microstructured materials, J. Comput. Phys. 

232 (1) (2013) 22–32.
[40] M. Ganesh, S.C. Hawkins, R. Hiptmair, Convergence analysis with parameter estimates for a reduced basis acoustic scattering t-matrix method, IMA J. 

Numer. Anal. 32 (4) (2012) 1348–1374, https://doi .org /10 .1093 /imanum /drr041.
[41] M. Ganesh, S. Hawkins, An efficient O(N) algorithm for computing O(N2) acoustic wave interactions in large N-obstacle three dimensional configura-

tions, BIT Numer. Math. 55 (1) (2015) 117–139.
[42] E.B. Lindgren, B. Stamm, Y. Maday, E. Besley, A.J. Stace, Dynamic simulations of many-body electrostatic self-assembly, Philos. Trans. R. Soc. 376 (2115) 

(2018) 5936–5949.
[43] S.A. Sauter, C. Schwab, Boundary element methods, in: Boundary Element Methods, Springer, 2010, pp. 183–287.
[44] V. Lebedev, D. Laikov, A quadrature formula for the sphere of the 131st algebraic order of accuracy, in: Doklady. Mathematics, vol. 59, MAIK Nauka/In-

terperiodica, 1999, pp. 477–481.

https://doi.org/10.1007/s10712-006-9007-2
https://doi.org/10.1016/j.cis.2007.04.003
https://doi.org/10.1006/jcis.1997.5240
https://doi.org/10.1063/1.3457157
https://doi.org/10.1039/c2cp42884a
https://doi.org/10.1134/S1063776113130050
https://doi.org/10.1063/1.4793664
https://doi.org/10.1063/1.4862897
https://doi.org/10.1063/1.2908077
https://doi.org/10.1098/rspa.2012.0133
https://doi.org/10.1016/j.jcis.2010.11.030
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4D656469756Ds1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4D656469756Ds1
https://doi.org/10.1016/j.icarus.2016.12.013
https://doi.org/10.1039/c1cp21573f
https://doi.org/10.1039/c2sm25602a
https://doi.org/10.1103/PhysRevLett.92.078301
https://doi.org/10.1038/nmat860
https://doi.org/10.1002/anie.200602914
https://doi.org/10.1038/nature04414
https://doi.org/10.1063/1.1521935
https://doi.org/10.1103/PhysRevE.87.013307
https://doi.org/10.1016/j.jcis.2016.02.033
https://doi.org/10.2174/1874183500902010032
https://doi.org/10.1103/PhysRevE.48.2721
https://doi.org/10.1063/1.4789014
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib486F73686931393837s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib486F73686931393837s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib42686172616477616A31393935s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib42686172616477616A31393935s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib426172726F7332303134s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib63617A656175783230313566617374s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib63617A656175783230313566617374s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4D636B656E7A696531393738s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4D636B656E7A696531393738s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4D637068656472616E31393738s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib53616E67616E6931393833s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib48696E73656E31393932s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib477265656E6761726431393934s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib47616E32303136s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib47616E32303136s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4C616932303134s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4C61694A435032303135s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4C61694A435032303135s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib47696D6275746173477265656E67617264s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib47696D6275746173477265656E67617264s1
https://doi.org/10.1093/imanum/drr041
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib47616E65736832303135656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib47616E65736832303135656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4C696E646772656E44796E616D696373s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib4C696E646772656E44796E616D696373s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib73617574657232303130626F756E64617279s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib6C6562656465763139393971756164726174757265s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib6C6562656465763139393971756164726174757265s1
https://doi.org/10.1134/S1063776113130050
https://doi.org/10.1063/1.1521935
https://doi.org/10.2174/1874183500902010032
https://doi.org/10.1103/PhysRevE.48.2721
https://doi.org/10.1063/1.4789014


E.B. Lindgren et al. / Journal of Computational Physics 371 (2018) 712–731 731
[45] E. Cancès, Y. Maday, B. Stamm, Domain decomposition for implicit solvation models, J. Chem. Phys. 139 (5) (2013) 054111.
[46] B. Stamm, E. Cancès, F. Lipparini, Y. Maday, A new discretization for the polarizable continuum model within the domain decomposition paradigm, J. 

Chem. Phys. 144 (5) (2016) 054101.
[47] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60 (2) (1985) 187–207.
[48] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (2) (1987) 325–348.
[49] P. Blanchard, B. Bramas, O. Coulaud, E. Darve, L. Dupuy, A. Etcheverry, G. Sylvand, Scalfmm: a generic parallel fast multipole library, in: Computational 

Science and Engineering (CSE), 2015.
[50] P. Fortin, High Performance Parallel Hierarchical Algorithmic for N-Body Problems, Theses, Université Sciences et Technologies - Bordeaux I, Nov. 2006, 

https://tel .archives -ouvertes .fr /tel -00135843.
[51] E.B. Lindgren, H.-K. Chan, A.J. Stace, E. Besley, Progress in the theory of electrostatic interactions between charged particles, Phys. Chem. Chem. Phys. 

18 (8) (2016) 5883–5895, https://doi .org /10 .1039 /c5cp07709e.
[52] A.J. Stone, The Theory of Intermolecular Forces, 2nd edition, Oxford University Press, Oxford, 2013.
[53] P. Atkins, J. de Paula, Atkins’ Physical Chemistry, 9th edition, W. H. Freeman, 2010.
[54] J.E. House, Inorganic Chemistry, 2nd edition, Academic Press, 2013.
[55] E. Bichoutskaia, N.C. Pyper, Fundamental global model for the structures and energetics of nanocrystalline ionic solids, J. Phys. Chem. B 110 (12) (2006) 

5936–5949, https://doi .org /10 .1021 /jp055800g.
[56] W.M. Haynes (Ed.), CRC Handbook of Chemistry and Physics, 97th edition, CRC Press, 2016.
[57] C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry, 2nd edition, Pearson, 2005.
[58] M.A. Boles, D.V. Talapin, Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases, J. Am. 

Chem. Soc. 137 (2015) 4494–4502, https://doi .org /10 .1021 /jacs .5b00839.

http://refhub.elsevier.com/S0021-9991(18)30393-0/bib43616E6365735F4A43505F6464434F534D4Fs1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib7374616D6D323031366E6577s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib7374616D6D323031366E6577s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib726F6B686C696E313938357261706964s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib677265656E676172643139383766617374s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib626C616E6368617264323031357363616C666D6Ds1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib626C616E6368617264323031357363616C666D6Ds1
https://tel.archives-ouvertes.fr/tel-00135843
https://doi.org/10.1039/c5cp07709e
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib53746F6E65s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib41746B696E73s1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib486F757365s1
https://doi.org/10.1021/jp055800g
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib48616E64626F6F6Bs1
http://refhub.elsevier.com/S0021-9991(18)30393-0/bib486F75736563726F6674s1
https://doi.org/10.1021/jacs.5b00839

	An integral equation approach to calculate electrostatic interactions in many-body dielectric systems
	1 Introduction
	2 Methodology
	2.1 Geometric description and problem formulation
	2.2 Representation in terms of integral equations
	2.2.1 Local representation
	2.2.2 Global representation
	2.2.3 Integral equation

	2.3 Discretization
	2.3.1 Real spherical harmonics and quadrature
	2.3.2 Galerkin approximation
	2.3.3 Energy
	2.3.4 Force

	2.4 Fast multipole method implementation

	3 Numerical results
	3.1 Timing and scaling
	3.2 Nonadditivity of the electrostatic force in many-body systems
	3.3 Neutral-charged particle interaction
	3.4 Opposite-charge interaction
	3.5 Like-charge interaction
	3.6 Halite lattice and estimation of the Madelung constant

	4 Conclusions
	Acknowledgements
	References


