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ABSTRACT: The electrostatic deposition of particles has
become a very effective route to the assembly of many
nanoscale materials. However, fundamental limitations to the
process are presented by the choice of solvent, which can
either suppress or promote self-assembly depending on
specific combinations of nanoparticle/surface/solvent proper-
ties. A new development in the theory of electrostatic
interactions between polarizable objects provides insight into
the effect a solvent can have on electrostatic self-assembly.
Critical to assembly is the requirement for a minimum charge
on a surface of an object, below which a solvent can suppress
electrostatic attraction. Examples drawn from the literature are
used to illustrate how switches in behavior are mediated by the solvent; these in turn provide a fundamental understanding of
electrostatic particle-surface interactions applicable to many areas of materials science and nanotechnology.

■ INTRODUCTION

The effective use of electrostatic forces in the self-assembly and
fabrication of nanomaterials is rapidly gaining significance in the
technological development of new devices and processes.1

Examples of electrostatic self-assembly range from isolated
nanoscale structures,2−4 through patterned5,6 and layered
surfaces7 to macroscopic crystals consisting of millimeter
diameter spherical polymer particles.8 In many assembly
processes, particularly in the fabrication of new devices, an
important component in the initial stage is the self-assembled
monolayer (SAM). A SAM acts as a template that enables surface
characteristics to be fine-tuned for the purpose of accommodat-
ing either individual nanoparticles or multilayers in the form of
layer-by-layer structures.9,10 SAMs can be either polar or
nonpolar, or they can be induced to attract or release protons,
all of which influence the electrostatic forces experienced by
nanoparticles when forming a layered surface: this electrostatic
constituent is central to almost all significant developments in the
field of thin film fabrication.11 If described in terms of point
charges (e.g., H+ and O−) located on self-assembly components,
the fabrication mechanism is, at first sight, straightforward. The
electrostatic force between any pair of point charges in vacuum is
universally expressed by Coulomb’s law.12 If the charges are
immersed in a homogeneous medium or solvent of dielectric
constant kmedium, the Coulomb force is attenuated by a factor
equal to kmedium as a result of a polarization charge being induced

in the medium.12,13 In these circumstances, the presence of a
polarizable medium does not alter the nature of the electrostatic
interaction; i.e., the sign of the force remains the same. However,
this simple description becomes more complicated if the
interactions involve finite-sized dielectric particles and/or
surfaces;13 a notable example being the counterintuitive like-
charge attraction between polarizable spheres in vacuum.14,15

Although most self-assembly processes take place in aqueous
solution9 there is a growing realization that for many of the newer
materials, such as magnetic nanoparticles16 and quantum dots,17

assembly in a nonpolar solvent would offer distinct advan-
tages.7,18 In all cases, however, it is of fundamental importance to
acquire a greater quantitative understanding of how interactions
between charged, polarizable, finite-sized objects are influenced
by the presence of a medium. Does attenuation by kmedium still
apply or does the force, and possibly the very nature of the
interaction, depend critically on the dielectric constants of the
various materials involved? A comprehensive answer to this
question would be to the benefit of particle-surface fabrication
and aggregation processes throughout many areas of materials
science. To date there is only qualitative evidence for a “solvent
effect” in electrostatic self-assembly;11,19,20 a quantitative analysis
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of such behavior would contribute to a more rigorous evaluation
of the role of the solvent.
In this paper, we demonstrate the critical nature of the solvent

in determining the success of electrostatic assembly. The
experimental observations21,22 chosen for discussion and
numerical modeling have been selected to match most closely
the framework underpinning the theory;14,23 i.e., a dielectric
spherical particle interacting with a planar, dielectric surface.
However, the general principles that emerge from these examples
should be applicable to any electrostatic self-assembly process
undertaken in the presence of a solvent. It is assumed that the
solvent is not acting as or containing an electrolyte. It is
acknowledged that pure water is itself a very weak electrolyte
providing screening fromH+ andOH− in equilibrium, but it has a
Debye length that far exceeds the discussed length scales (λD≈ 1
μm, at room temperature). The intention is to focus on
understanding how the solvent as a uniform dielectric medium
may influence the assembly process. The effects of the presence
of an electrolyte have been considered in a separate paper.24 The
selected examples include a neutral particle interacting with a
charged surface21 and a negatively charged particle interacting
with a positively charged surface.22 Basic classical electrostatic
considerations, which are only valid for point charges or
nonpolarizable objects, would predict a zero force in the first
example and an attractive force in the latter case; however, our
calculations reveal that the interaction can switch between
repulsion and attraction, depending on the solvent and the
properties of materials involved. The effect that media with
different dielectric constants have on the neutral particle−point
charge interaction has been illustrated previously by Barros and
Luijten,25 and they also present a numerical solution to the case
where the particle carries a charge.
The numerical results presented here are derived from

analytical theory14,23 capable of explaining many of the
experimental outcomes likely to be encountered during the
electrostatic fabrication of particle−particle and particle−surface
assemblies. Previous attempts26 to calculate the electrostatic
force in a two-particle system include the application of an
accurate re-expansion method27,28 proposed by Washizu and co-
workers; however, convergence of the re-expansion method
becomes generally poor if the ratio of the radii of the spheres is
large and if the particles are closely spaced. To address a
potentially similar covergence problem, we apply an efficient
numerical discretization method proposed by Lindgren and co-
workers29 to an infinite sum of Legendre polynomials
representing the electrostatic force in the mathematical
solutions14,23 used in this study. Using this method, we include
as many terms in the expansion as needed to achieve effective
convergence in the quantitative estimation of the electrostatic
force. This numerical capability is particularly important in the
cases where interacting particles have high values of the dielectric
constant, are separated by small distances, and/or largely differ in
size. Additionally, our solution, as indeed any method based on a
multipole expansion of the electrostatic force, provides a
meaningful physical insight into the interaction problem, for
example by presenting an exact surface charge distribution on
interacting particles, which varies with separation distance.
Lindell and co-workers30 generalized the classical image charge
solution to a system composed of two dielectric spheres
suspended in a medium. This solution also suffers from the
convergence problem, intrinsic to all image charge methods, as
the separation between interacting particles becomes small.

■ ELECTROSTATIC MODEL
The new insight into how the medium influences electrostatic
interactions between charged dielectric materials builds on work
published previously,14,23 where analytical expressions have been
given for the electrostatic force between charged, dielectric
sphere−sphere and charged, dielectric sphere−planar surface
systems in a vacuum. In these electrostatic models, the mutual
effect of charge is obtained from Gauss’s law, which couples
uniquely the electrostatic potential with the distribution and
magnitude of electric charge on the surfaces of the interacting
objects. The accumulated surface charge is integrated to obtain
an analytical expression for the electrostatic force acting on the
interacting objects at arbitrary separation. The obtained result is a
simple series expression for the force that can be efficiently
generalized for studying interactions in solutions.
In this section, we introduce a uniform homogeneous

dielectric medium into the Maxwell formalism. In the
models,14,23 the f ree charge distributed over the surfaces of the
interacting objects defines an interface discontinuity in the
normal component of the electric displacement field, such that31

σ = · ̂ − · ̂D n D n( ) ( )free medium object (1)

where σfree is the free charge density at the boundary between the
object and the medium, Dmedium and Dobject are, respectively,
electric displacement vectors in the medium and in the object,
and n̂ is a unit vector directed toward the medium. In an isotropic
and uniform medium, the displacement vector is generally
related to the electric field via the permittivity, ε, as D = εE.
Therefore, eq 1 can be rewritten as
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where kobject = εobject/ε0 and kmedium = εmedium/ε0, Eobject is the
electric field generated inside the object, Emedium is the electric
field generated in the medium, and εobject, εmedium, and ε0 are the
permittivity of the object, the medium, and free space,
respectively. The total surface charge density, σtotal, is the sum
of the f ree and bound surface charge densities. The f ree charge has
an external origin and arises from some form of ionization
process. In contrast, the bound charge is induced at an interface
by the presence of an external electric field generated by an
adjacent charged object. The total charge distribution generates
the resultant electric field both inside and outside the interacting
objects so that it defines an interface discontinuity in the normal
component of the electric field, such that
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Following Maxwell’s derivation32 of the electrostatic force
acting on an object with charge Qi from an object with chargeQj,
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is the electric field generated by the second object, rij = xi− xj, ρi is
the volume charge density (dQi = ρi d

3ri), and ∇·Ei = ρi/ε0 in
accordance with Gauss’s law. The total field and volume charge
density are E = E1 + E2 and ρ = ρ1 + ρ2, respectively. The volume
Vi and the closed surface Si contain the object Qi only, and they
are in close proximity to its boundary. Therefore, within Si, ρ = ρi
or ∇·E = ∇·Ei. Because the object Qi cannot act on itself the
integral ∫ε ∇· =E E r( ) d 0

V i i i0
3

i
. This allows the force to be

rewritten as

∫ε= ∇·F E E r( ) dij
V

0
3

i (5)

The integrated product of the electric field vector on its
divergence can be represented as the divergence of the tensor:

ε ∇· = ∇·E E T( ) ( )0 (6)

where ε δ≡ −( )T E E Eij i j ij0
1
2

2 is the Maxwell stress tensor in a

vacuum. Then
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Finally, the electrostatic force in a nondeformable isotropic
dielectric medium is33
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To investigate the components of the electrostatic force Fij,
representing contributions from the medium and objects
separately, an alternative “four-layer”model has been developed,
which is described in detail in Appendix A. This alternative
solution gives the same value for the electrostatic force as eq 8
showing a complete quantitative agreement between these two
approaches.

■ RESULTS AND DISCUSSION
Two coupled phenomena that define the nature of the
electrostatic interaction in a medium are an interfacial
redistribution of polarization charge and a reduction in the
force due to the presence of a medium. The critical parameter for
the interaction is the ratio between the permittivity of the
interacting object and the medium, kobject/kmedium. If
kobject/kmedium ≈ 1, polarization effects become negligible and
the presence of the medium simply decreases the magnitude of
the force. In contrast, when kobject/kmedium ≪ 1 or kobject/kmedium
≫ 1, the charge induced at the interface between the medium
and the interacting objects may promote a marked change in the

Figure 1. Electrostatic force (nN) as a function of the surface-to-surface separation between a neutral alumina spherical particle and a charged
nanodiamond surface immersed in a medium with dielectric constant kmedium = 1.86 (a) and kmedium = 20 (b). The particle has a radius of 25 nm and a
dielectric constant kparticle = 9.9. The surface charge density of the planar surface is σsurface = +1 e·nm−2, and the dielectric constant is ksurface = 5.3.

Figure 2. Schematic illustration of the electrostatic interaction corresponding to the case presented in Figure 1, showing equipotential lines, the electric
field, the effective dipole moment in the neutral alumina particle (Appendix B), values of the effective surface charge density at selected points, and values
of the electric potential at selected points away from the surface. Note the switch in the direction of the effective dipole moment when the dielectric
constant of the solvent changes from kmedium = 1.86 (a) to kmedium = 20 (b).
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magnitude of the force. Also, the nature of the electrostatic force
may change switching from attractive to repulsive and vice versa,
as indicated by a change of sign in the force. This effect was
qualitatively described by Israelachvili13 using the simple dipole
approximation, and also predicted by Wu and co-workers34 for
neutral and charged Janus particles with various permittivities,
immersed in symmetric and asymmetric electrolytes.
A straightforward example of how the properties of a solvent

could either facilitate or suppress electrostatic fabrication, can be
seen from experiments21 involving the interaction of neutral
spherical alumina particles (approximately 50 nm diameter and
dielectric constant kparticle = 9.9) with a charged nanodiamond
surface of dielectric constant ksurface = 5.3. The expectation is that
a neutral particle will be attracted to a surface with a given charge
density of σsurface = +1 e·nm−2, and that is exactly what the
experiments show if the particles are immersed in a liquid
medium of dielectric constant kmedium = 1.86 (insulating
fluorocarbon solution, fluorinert FC-90). Figure 1a reinforces
this observation by showing that the computed electrostatic force
is attractive at all separation distances up to touching point (a
negative force denotes attraction). However, further calculations
show that the nature of the interaction can switch markedly from
being attractive to repulsive if a solvent with a dielectric constant,
kmedium = 20, for example, acetone, were to be used instead
(Figure 1b).
This transition from attractive to repulsive electrostatic

behavior occurs at kmedium = kparticle = 9.9, where the lack of a
dielectric discontinuity at the interface between the particle and
themedium implies an absence of polarization charge resulting in
the elimination of any electrostatic interaction between the
particle and the surface. At kmedium = 1.86, where the medium is
less polarizable than both the alumina particle and the
nanodiamond surface, the positively charged, planar surface
can induce an effective dipole on the neutral particle, which as
shown in Figure 2a, points away from the surface. Because the
negative component of the dipole is adjacent to the positively
charged surface, the overall interaction between the particle and
the surface is dominated by an attractive electrostatic force.
However, if a solvent with a higher dielectric constant is chosen,
i.e., kmedium = 20, the medium is now more polarizable than either
the particle or the surface and, as shown in Figure 2b, there is a
corresponding switch in the direction of the induced dipole. The
result is a net repulsive interaction between the particle and the

surface, which would not be predicted from a simple application
of Coulomb’s law. Note also that, although a charge density of +1
e·nm−2 has been imposed on the surface, the effective charge
experienced by the neutral particle is severely depleted in the
presence of a high dielectric solvent. The observed repulsive
interaction between a neutral particle and a charged planar
surface will persist with high-dielectric solvents, such as water
(kmedium = 80) that are increasingly more polarizable than the
components offered for electrostatic self-assembly. For a
neutral−charged pair of objects, further calculations show that
neither changing the sign of the charge on the planar surface nor
increasing the magnitude of the charge on the surface can change
these circumstances.
As a second illustration of the importance of the solvent in

influencing fabrication processes, the assembly of thin films from
polyoxometalate (POM) nanoclusters has been examined.
Nanostructured materials containing POMs are increasingly
seen as an attractive route to the development of functional
materials and devices;22,35 however, to achieve these objectives, it
is necessary to develop a strategy for creating coherent thin-film
structures. Most POMs are soluble in water,36 but it is widely
recognized that from such a polar medium it is not possible to
fabricate layers without first creating a charged substrate.22 The
following calculations have been designed to model the
deposition of the Eu-POM onto a layer of positively charged
macromolecules in the form of a planar substrate.22 Liu et al. have
subsequently shown that this particular combination of materials
can form the base of an electrochromic device.35 The Eu-POM is
an anion, [Eu(H2O)P5W30O110]

12−, and a polyelectrolyte layer
residing on a quartz or silicon substrate provides the positive
charge. The charge density associated with the substrate is
unknown, and it is this quantity that is explored here in terms of
the minimum density required to promote the surface deposition
of POMs in a solvent with a given dielectric constant. Although
the presence of an electrolyte (NaCl) does improve surface
coverage, it has been shown that fabrication can proceed in the
absence of sodium chloride.22

Table 1 shows the calculated electrostatic force between
[Eu(H2O)P5W30O110]

12− and a uniform polyelectrolyte layer as a
function of both the charge density on the substrate and the
dielectric constant of the solvent in which the Eu-POM is
suspended (a negative force denotes an attractive interaction). As
can be seen, at very low surface charge densities, the two

Table 1. Electrostatic Force (pN) Calculated for the Experimental Case22,35 of an Interaction between a Eu-POM,
[Eu(H2O)P5W30O110]

12−, and an Oppositely Charged Planar Surface at the Surface-to-Surface Separation Distance of 1 nma

σsurface

kmedium 0.001 0.005 0.01 0.05 0.1 0.5 1

1 −2510.4 −2649.6 −2823.7 −4216.2 −5957.1 −19889.0 −37317.1
10 118.8 105.0 87.7 −50.2 −222.7 −1602.2 −3326.6
20 108.4 101.5 92.9 23.8 −62.7 −753.9 −1617.9
30 86.4 81.8 76.0 29.8 −27.8 −489.4 −1066.2
40 70.7 67.2 62.9 28.2 −15.1 −361.6 −794.6
50 59.6 56.8 53.3 25.6 −9.1 −286.5 −633.1
60 51.4 49.1 46.2 23.0 −5.9 −237.1 −526.1
70 45.1 43.2 40.7 20.8 −4.0 −202.3 −450.1
80 40.2 38.5 36.3 19.0 −2.7 −176.3 −393.2

aCalculations have been undertaken using different combinations of charge density on the planar surface (σsurface) and dielectric constant of the
medium (kmedium). The POM particle has a radius of 0.5 nm and an estimated dielectric constant of kPOM = 10.b The planar surface has a coating of
poly(ethylenimine)/poly(styrenesulfonate)/poly(allylamine hydrochloride) with an estimated dielectric constant of ksurface = 5.37 The charge density
on the planar surface is in units of e·nm−2. bThere do not appear to be any reliable data on the dielectric constants of POMs. A value of 10 is based
on values for metal oxides38 and metal-containing nanoparticles.39

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00647
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/acs.jctc.7b00647


interacting objects are only attracted to one another in vacuum
(kmedium = 1) and in all other solvents a layered structure would
fail to form. The reason for this failure is related to the
observations accompanying Figure 1, in that for constituents
with the dielectric constants kPOM = 10 and ksurface = 5 in the
presence of a solvent where kmedium ≥ 10, there will be a weakly
repulsive electrostatic force preventing assembly. However, as
Table 1 shows, a gradual increase in surface charge density reveals
the existence of a critical density, σcritical = 0.1 e·nm−2, beyond
which layer formation is assured for all solvents including water.
To demonstrate the consequence of introducing a solvent in

terms of changes that take place in the distribution of charge,

Figure 3 gives a graphical illustration of an example taken from
Table 1. For a net charge of −12 e on the POM and a planar
surface charge density of +0.05 e·nm−2, changes in density as the
two interacting objects approach one another have been
calculated for a vacuum (Figure 3a) and for a solvent with a
dielectric constant of 20 (Figure 3b). For the vacuum case, Figure
3a also shows how charge density on the surface changes from
σsurface = +0.05 e·nm−2, at a radial distance of 10 nm from the
POM, to σsurface ≈ +0.6 e·nm−2 immediately below the POM. A
comparable change in negative charge density is seen on the
POM, and the net result is that oppositely charged bodies attract.
With the introduction of a solvent, the transition in behavior is

Figure 3. Schematic illustration of the POM−surface interaction. In (a) the medium/solvent has a dielectric constant of 1 (vacuum) and in (b) the
medium/solvent has a dielectric constant of 20. The planar surface has a surface charge density of +0.05 e·nm−2 and the POMparticle has a net charge of
−12 e. The total charge density on the planar surface, σsurface (dashed curve) and on the POM particle, σPOM (solid curve) are also shown for each
interaction case: for σsurface, the x-axis denotes the radial position of charge (y), with y = 0 indicating the center of POMprojected on the surface; for σPOM,
the x-axis denotes the polar angle (β), where β = 0 represents the nearest point to the plane. The color shades on both objects reflect qualitatively the
calculated charge distribution; however, the color scale is different in each example.

Figure 4. Electrostatic maps showing regions of repulsive (light purple) and attractive (white) interactions. The electrostatic force has been calculated as
a function of the charge ratio,Q2/Q1, and the radius ratio, a2/a1, with the radius and charge of particle 1 fixed at a1 = 1 andQ1 = 1. The dielectric constants
of the particles are k1 = k2 = 10, and the calculations have been undertaken at a fixed separation distance of s = 0.1a1.
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dramatic. The POM retains a negative charge, but the presence of
the surface hasminimal effect on how it is distributed. In contrast,
the planar surface is, as expected, positively charged at a radial
distance of 10 nm from the POM, but as Figure 3b shows, in close
proximity to the POM, the charge on the surface changes sign to
become σsurface ≈ −0.25 e·nm−2 at the point of closest contact.
The net result now is that the two interacting objects repel one
another. As demonstrated in Figure 2, polarization of the solvent
leads to a dramatic attenuation of charge density; however, in
that example, it was the neutral particle that switched density,
whereas in Figure 3, it is the charge on the planar surface that is
most influenced by the choice of solvent.
There are several examples in the literature of deposition

processes where there is evidence of a critical charge density
being required for the growth of layers.10,40 The exact numbers in
Table 1 are specific to the model system being studied; however,
it is instructive to see what the values equate to in molecular
terms: given that a Eu-POM has a diameter of approximately 1
nm, which would give it a projected surface coverage of 3.14 nm2,
the required critical surface charge density is less than one proton
per POM. If, however, the attractive force needs to be greater
than the minimum, then at σsurface = +0.5 e·nm

−2, for example, the
surface coverage would need to be closer to two protons per
POM. Some of the experimental evidence for a critical charge
density in layer-by-layer assembly is complicated by the need to
invert surface charge to accommodate subsequent layers;41

however, there is supporting evidence for such an effect when,
under aqueous conditions, polystyrene nanoparticles with
varying degrees of negative charge are adsorbed onto the surface
of a positively charged polymer film.42

With a view to understanding at a general level the conditions
required for electrostatic self-assembly, Figure 4 summarizes a
series of extensive calculations that explore the consequences of
charged particles interacting in solvents with a range of dielectric
constants. The calculations cover interactions between both
opposite- and like-charged particles, and size ratios that span
from particles of equal size through to differences in size that are
almost representative of a particle−planar surface interaction
(Appendix C). In each of Figure 4a−f, regions of repulsion
between the two particles are shown in purple. Given that each
particle has a dielectric constant of 10, the most dramatic changes
take place as the dielectric constant of the solvent shifts from 5
through to 15. At kmedium = 5, all interactions where the particles
are oppositely charged are attractive, as are a significant fraction
of those between like-charged particles, but under two quite
distinct sets of conditions. Attraction between like-charged
particles occurs when there are either large differences in particle
size or when the particles are comparable in size but carry
significantly different amounts of charge; in both cases the
attraction arises from an enhanced polarization of surface charge.
As kmedium switches from a value of 9 to one of 11, there is a
dramatic change in the nature of the particle−particle
interaction; now each particle becomes actively engaged in
polarizing the solvent rather than the adjacent particle, and
surface charge at the particle−solvent interface can cause net
repulsion, even when the particles carry opposite charges (Figure
3b). As the dielectric constant of the solvent increases in
magnitude, the region of attraction between oppositely charged
particles diminishes markedly but remains predominantly
dependent on small differences in charge density between the
interacting particles. In effect, there is a critical charge density,
below which there is no attraction cf. Table 1.

There are important differences between the two examples of
self-assembly discussed above. In the first case, any attractive
interaction between the charged nanodiamond surface and the
neutral alumina particle is due entirely to polarization effects, and
these are readily suppressed when the dielectric constant of the
medium exceeds that of the interacting constituents. In contrast,
the second example represents a case where oppositely charged
constituents should experience an interaction, which Coulomb’s
law would describe as being attractive under all circumstances
(vacuum and solvent). However, that is clearly not the case, and
the calculations reveal the existence of a critical charge density
that is required to be present on a substrate to overcome
polarization effects in a medium that may serve to suppress any
attraction.

■ CONCLUSION
A consistent message to emerge from the calculations presented
in this work is that electrostatic self-assembly is more likely to
proceed if undertaken in a solvent with a low dielectric constant.7

Although such conditions make it more difficult for particles and
surfaces to acquire charge, the calculations show that assembly
can proceed at significantly lower levels of charge than are typical
for an aqueous medium. The absence of strong screening also
means that low charge levels can be effective over large distances,
which again should be important for self-assembly.

■ APPENDIX A: AN ALTERNATIVE “FOUR-LAYER”
MODEL

An alternative approach to calculating the force between two
spheres in a medium is a “four-layer” formalism, based on the
bispherical coordinate system (Figure 5). In this alternative

model (Figure 6), two spheres with dielectric constants k1 and k5,
radii a1 and a4, and free constant surface charges σ1 and σ4,
respectively, are each surrounded by a thin layer of spherical
vacuum, k2 = k4 = 1, embedded in a polarizable medium whose
dielectric constant is k3. The thickness of the vacuum layer
surrounding each sphere is assumed to approach zero. This
construction allows an unambiguous separation of the spheres
from the surrounding medium. The electrostatic force acting on
sphere 1 then corresponds to the sum of the forces between (i)
the charge residing on the surface of the second sphere with the

Figure 5. Schematic diagram of geometric parameters in the bispherical
coordinate system. (a) a1 and a2 are the radii of sphere 1 and sphere 2; a
is half the separation between the two foci; s is the surface-to-surface
separation, and r is the center-to-center separation; c1 and d1 are inverse-
point separations with respect to sphere 1 (d1c1 = a1

2), and c2 and d2 are
inverse-point separations with respect to sphere 2 (d2c2 = a2

2). (b) A
position of an arbitrary point x can be described in terms of
η ≡ − ln(r1/r2), ξ ≡ θ1 − θ2, and the azimuthal angle φ about the axis
that joins the centers of the spheres, where r1 and r2 are the distances of
the point from the two foci and θ is the angular position of the point
relative to the origin (midpoint of the interfocal separation).
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charge residing on the surface of sphere 1, (ii) the charge residing
on the surface of the second sphere with the polarization charge
(originated from the medium) residing a distance a2 from the
center of the sphere 1, (iii) the polarization charge (originated
from the medium) residing a distance a3 from the center of the
second sphere with the charge residing on the surface of sphere 1,
and (iv) the polarization charge (originated from the medium)
residing a distance a3 from the center of the second sphere with
the polarization charge (originated from the medium) residing a
distance a2 from the center of the sphere 1. The resultant
electrostatic force can be written as

∫ ∫

∫ ∫

∑ ∑
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= =
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where dQij = dQi + dQj.
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The above model for calculating the force requires a
determination of the potential in the five regions specified in
Figure 6. These potentials in bispherical coordinate system are
given by

∑ ∑η ξ ξΦ = − Φ
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η η
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or

∑σ η ξ
π

ξ= − + Φ

=
=

∞
n

aK
P

i

(cosh cos )
2 1
4

(cos )

1, ..., 4

i i
n

i n n
3/2

0
,

(13)

The boundary conditions for uniformly charged spheres are
given by σ2,f = σ3,f = 0
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Substituting eq 11 in eq 14 gives
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Multiplying the above equation by Legendre polynomials,
Pn(cos ξ) sin ξ dξ and integrating over a unit sphere leads to
(η1 = η2 = |η1| > 0; η3 = η4 = −|η4| < 0):
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The above four boundary conditions can be reduced to two by
using the following identities (in the same limit: η2 → η1 and
η3 → η4)

π σ
η

Φ = −
−

−
Φ

η− +aK

k
n2

4 e
sinh
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1
n

f
n
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n1,
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1

1 2,
1

1
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Figure 6.Geometric representation of the “four-layer” formalism, where
a1 and a4 are the radii of the spheres, a2 and a3 are the radii of vacuum
layers, Φ1 and Φ5 are the potentials inside spheres, Φ2 and Φ4 are the
potentials inside the vacuum layers,Φ3 is the potential in the medium, k1
and k5 are the sphere permittivities (dielectric constants), k3 is the
dielectric constant of the medium, and k2 = k4 = 1, corresponding to the
vacuum permittivity. Note that the thickness of the vacuum layers has
been made visually finite for clarity.
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It is then easy to see that the addition of equations corresponding
to i = 1 and i = 2 from eq 16 will lead to
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and

= η η− + −f en
n[ (1/2)]( )1 4 (22)

Similarly, an addition of equations corresponding to i = 3 and
i = 4 from eq 16 will lead to
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Both models presented here produce exactly the same value for
the electrostatic force, and therefore they can be used
interchangeably.

■ APPENDIX B: EFFECTIVE DIPOLE MOMENT OF A
POLARIZED SPHERE

For the example addressed in Figures 1 and 2, where a neutral

dielectric sphere interacts with a charged planar surface, the

sphere, under the influence of an electric field generated by the

surface, becomes polarized, which leads to the appearance of a

dipolar distribution of positive and negative bound charge on the

surface of the sphere such that

∫ ∫ ∫= + =+ −Q Q Qd d d 0bound bound bound (24)

The averages of the position vectors rbound+ and rbound− (Figure 7)
of the bound charge elements dQbound+ and dQbound−,
respectively, are given by
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and
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where

∫ ∫ ∫δ

δ
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= −

+ − −Q Q Q Q

Q

d d dbound bound bound

By definition, the effective dipole moment on the neutral
polarized sphere can be written as

∫ ∫
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Q Q
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p r r

r r
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With the origin of the spherical coordinate system at the center
of the sphere, positions at the surface of the sphere are as follows:
r = as (sphere radius), θ ∈ {0, π} and φ ∈ {0, 2π}. For a bound
charge element, dQbound = σbound dS, where σbound is the surface
bound charge density and dS = as

2 sin θ dθ dφ is a surface
element, an effective dipole moment on the polarized sphere can
be derived as follows

Figure 7.Geometric representation of the various quantities relevant to
the calculation of the effective dipole moment of a polarized sphere.
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The azimuthal symmetry inherent in this two-body problem
allows a cancellation of the dependence of surface-bound charge
density on the azimuthal angle φ, such that the second and third
terms inside the brackets in eq 28 become zero and the
expression for the effective dipole moment can be simplified to
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Accordingly, the effective polarization (dipole moment per unit
volume) can then be defined as
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■ APPENDIX C: LARGE SPHERE APPROXIMATION TO
AN INFINITE PLANAR SURFACE

Although a solution to the dielectric particle−planar surface
problem has recently been presented,23 calculations show that
the solution is not stable if the planar surface is assigned a charge.
To treat the latter situation, it is shown next that, providing the
ratio of their radii is sufficiently large, the particle−planar surface
geometry can be approximated by a small sphere interacting with
a much larger, charged sphere.
The relative geometry of a system consisting of two spherical

objects is dependent upon the relationship between each of the
constituent length quantities, namely, the radii of the particles
and their surface-to-surface separation. For example, if the
separation between two spheres is much larger than their radii,
the system approaches the geometric limit of two point particles.
A quantitative description of this scenario has recently been
proposed in the form of a general geometric representation based

on the bispherical coordinate system.43 The formalism
introduces a parameter, s* = s/2a, where s is the surface-to-
surface separation and 2a is the distance between the two inverse
points in bispherical coordinates. The parameter approaches the
limit of s* = 1 when the radii of both spheres are much smaller
than s, i.e., in the limit of two point particles, and approaches the
limit s* = 0 when the radii of both spheres are much larger than s.
The latter limit also applies to two planar surfaces, which can be
regarded as two spheres with infinite radii (Lie sphere geometry).
Intermediate cases, for example, a plane−sphere or a point
charge−sphere geometries, correspond to values of s* that lie 0
and 1.
For the geometric arrangement described in Figures 1 and 2,

namely, a nano-diamond plane and a 50 nm-diameter alumina
sphere separated by s = 25 nm, the parameter s* is equal to
0.2887. In the calculations undertaken here, the nano-diamond
plane has been approximated by a large sphere with a diameter a
factor of 3 × 102 greater than that of the silica particle; hence the
system’s geometry is characterized by a value of s* = 0.2896,
which corresponds to a geometric error in s* ≤ 0.5% when
compared to the plane−sphere case. To illustrate what a
geometric error of this magnitude means in terms of a calculated
electrostatic force, Figure 8 shows a comparison between
calculations where a sphere interacts with a surface that is
treated as an infinite plane, and a calculation where the latter is
approximated by a large sphere. In both cases, it is the smaller
sphere that carries the charge and the planar surface/large sphere
is assumed to be neutral.14,23

Figure 8 shows that once the sphere mimicking a surface
becomes sufficiently large, the difference between the approx-
imate force and the actual force (obtained by considering an
infinite planar surface) becomes negligible. Hence, this
approximation provides a mechanism for treating infinite
dielectric surfaces that also carry a charge.
In general, the larger the ratio between the radii of the spheres

becomes, the greater the number of terms required in the
multipole expansion to achieve convergence of the calculated
force. For example, in the case of Figure 8, when this ratio is equal
to 1000, a minimum of 4000 terms are needed to obtain a force
that is converged to five significant figures. A comprehensive
discussion of how the number of terms depends not only on the
radius ratio, but also on other parameters of the system, such as
charge ratio, dielectric constant and separation distance, is
presented elsewhere.44

Figure 8. (a) Calculated electrostatic force (nN) as a function of the radius ratio between a large, neutral sphere (to mimic an infinite planar surface) and
a smaller charged sphere with fixed radius of 25 nm and charge density σsphere =±1 e·nm

−2. The dashed line denotes the force obtained by repeating the
calculation, but using a solution that can treat an infinite planar surface.23 (b) Percentage error between the forces given in (a) as a function of the radius
ratio.
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