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Using the bispherical coordinate system, an analytical solution describing the electrostatic force
between a charged dielectric sphere and a planar dielectric surface is presented. This new solu-
tion exhibits excellent numerical convergence, and is sufficiently general as to allow for the pres-
ence of charge on both the sphere and the surface. The solution has been applied to two exam-
ples of sphere-plane interactions chosen from the literature, namely, (i) a charged lactose sphere
interacting with a neutral glass surface and (ii) a charged polystyrene sphere interacting with a
neutral graphite surface. Theory suggests that in both cases the electrostatic force makes a ma-
jor contribution to the experimentally observed attraction at short sphere-plane separations, and
that the force is much longer ranged than previously suggested. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4862897]

I. INTRODUCTION

There are numerous examples1–7 in science and engineer-
ing where improvement in our knowledge of how charged par-
ticles interact with a surface could have a significant impact
on understanding the mechanisms involved in such interac-
tion and on the possible development of new processes and
devices.1 Examples of where charged particles interact with
surfaces are wide ranging and applications include the de-
position of inhaled aerosols onto the surface of the lung,2–4

layer-by-layer powder coating,5 wet electroscrubbers for gas
cleaning,6 and electrostatic powder coating of food,7 amongst
many others. Particles can acquire charge either by accident or
by design, and the question that arises first and foremost is “is
the presence of a charge favourable to the process in-hand”?
And if the answer is yes, then “what sign and magnitude of
charge should the particle accommodate in order to improve
performance”? Whilst a number of recent experiments8–10

have been effective at measuring the forces (electrostatic and
van der Waals) between a single charged particle and a sur-
face or substrate, these studies are still restricted to mate-
rials that are most amenable to experimentation. Typical of
the combinations that have been studied are lactose parti-
cles with a glass surface10 (to mimic tribocharging in parti-
cles of pharmaceutical interest) and, as a more general model,
polystyrene particles with a graphite surface.8, 9 It is quite pos-
sible, therefore, that only an accurate theoretical representa-
tion of the interaction of a charged particle with a surface can
provide a truly universal picture of events in terms of the range
and combination of material and charge that are in need of de-
tailed investigation.1

a)Author to whom correspondence should be addressed. Electronic mail:
Elena.Bichoutskaia@nottingham.ac.uk; URL: http://bichoutskaia.chem.
nottingham.ac.uk.

In this study, a general solution describing the interaction
between a charged sphere and a planar surface is presented,
where both parts are composed of a dielectric material and
can carry a charge. The solution provides a measure of the
electrostatic force between the two constituents as well as a
measure of the redistribution of surface charge that arises as
the result of a mutual polarization of the bound charge resid-
ing on a particle and on a surface. It is shown that these fea-
tures of the system are sensitive to the charge and dielectric
constant, of both the sphere and the surface.

To date, there have been a number of attempts to model
the electrostatic interaction between a charged sphere and a
planar surface.11–16 In most instances, it has been assumed
that the sphere and/or the surface are conductors. Nakajima
and Sato13 adapted a dielectric sphere-sphere model by sub-
stituting a large sphere for a planar surface, but noted prob-
lems with numerical convergence for spheres with substan-
tial differences in radii. The original dielectric sphere-sphere
solution,17 derived in spherical coordinates, diverges at short
separations between the interacting spheres if the radius of ei-
ther sphere is taken to be infinite. To date, some experimental
measurements on the force between a particle and a surface
have been interpreted using a simple conducting-plane elec-
trostatic model together with additional contributions from
van der Waals interactions.8, 9, 14 This brief summary suggests
that an alternative theoretical approach is required in order to
provide a quantitative understanding of the electrostatic inter-
action between a charged dielectric sphere and a planar di-
electric surface.

A general solution for the electrostatic interaction be-
tween a pair of charged dielectric spheres derived in bispher-
ical coordinates is shown to be consistent with the previous
solution17 in spherical coordinates. Subsequently, the bispher-
ical solution is adapted to the sphere-plane limit, where it has
been used for a numerical study of the interaction between
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a charged sphere and a neutral, planar surface. Existing ex-
perimental examples of sphere-plane interactions between a
charged lactose sphere and a neutral glass surface,10 and a
charged polystyrene sphere with a neutral graphite surface,8, 9

have been investigated, and electrostatic forces and surface-
charge densities on both the sphere and the planar surface
have been calculated.

II. METHODOLOGY

A. Geometry of the problem
in bispherical coordinates

The bispherical coordinate system,18 as shown in
Figure 1, has been employed to calculate the electrostatic
force due to the presence of permanent charge residing on
the surfaces of two dielectric spheres. Interacting spheres, de-
noted by i (i = 1,2), with an arbitrary radius ai, permittivity
εi, and carrying an arbitrary charge Qi, are immersed in a di-
electric medium of permittivity kmε0 (where for free space km

= k0 = 1). The permittivity of a sphere relative to that of free
space is the dielectric constant ki = εi

ε0
, which is dimension-

less, where the permittivity of free space (vacuum) ε0 is equal
to 8.8541878176 × 10−12 F/m. In its normal state, the dielec-
tric material is electrically neutral and contains equal amounts
of positive and negative bound (polarization) charge. The free
charge on each sphere, which contributes to the net charge of
the sphere, is assumed to be distributed uniformly over the
surface, such that no volume charge has to be considered.
The total surface charge density σ i is a sum of the free and
bound charge densities: σ i = σ f,i + σ b,i. The free charge on
each sphere is fixed, independent of the dielectric constant,
and does not vary with the separation distance between the

FIG. 1. Schematic diagram of the geometric parameters in the bispherical
coordinate system: (a) a1 and a2 are the radii of sphere 1 and sphere 2; a
is half the separation between the two foci; s is the surface-to-surface sep-
aration, and h is the centre-to-centre separation; c1 and d1 are inverse-point
separations with respect to sphere 1 (d1c1 = a1

2), and c2 and d2 are inverse-
point separations with respect to sphere 2 (d2c2 = a2

2). (b) a position of an
arbitrary point X can be described in terms of η ≡ −ln(r1/r2), ξ ≡ θ1 − θ2,
and the azimuthal angle φ, where r1 and r2 are the distances of the point from
the two foci; θ1, s and θ2, s are the corresponding polar angles of sphere 1 and
sphere 2; θ is the angular position of the point relative to the origin (midpoint
of the interfocal separation); z1 and z2 are the separations of the centres of
sphere 1 and sphere 2 from the origin.

spheres. This condition implies a constant free surface charge
density, σ f,i, and the variation in electrostatic force acting on
the system is a result of polarization of the bound charge re-
siding on the surface of one sphere induced by an electric field
due to the presence of charge on the second sphere.

The position of an arbitrary point X in space is described
with reference to inverse-point separations corresponding to
spheres 1 and 2, which, like the two foci, are separated by a
distance 2a. As shown in Figure 1(a), c1 and d1 are inverse-
point separations with respect to sphere 1 (d1c1 = a2

1) and,
similarly, c2 and d2 are inverse-point separations with respect
to sphere 2 (d2c2 = a2

2). The centre-to-centre separation be-
tween the interacting spheres is taken to be h = a1 + a2 + s,
where s is the surface-to-surface separation. Alternatively, the
separation h can be defined as h = 2a + c1 + c2, as illustrated
also in Figure 1(a).

The bispherical coordinates are denoted as (η, ξ , φ) and
defined by Arfken18

x = a sin ξ cos φ

cosh η − cos ξ
; y = a sin ξ sin φ

cosh η − cos ξ
;

(1)

z = a sinh η

cosh η − cos ξ
,

where η is a dimensionless parameter defined as η = − ln( r1
r2

),
and r1 and r2 are defined in Figure 1(b); η = η1 is a posi-
tive constant which represents the surface of sphere 1, and η

= −η2 where η2 is a positive constant which represents the
surface of sphere 2. The variable η is, therefore, positive
for the upper half plane occupied by sphere 1 (z ≥ 0 or
0 ≤ θ ≤ π

2 ) and negative for the lower half plane occupied
by sphere 2 (z ≤ 0 or π

2 ≤ θ ≤ π ), the angles θ , θ1, and θ2

are defined in Figure 1(b). From the definition of η it follows
that η = ∞ inside sphere 1 when r1 = 0, and η = −∞ inside
sphere 2 when r2 = 0; on the xy plane (z = 0 or r2 = r1) η is
zero.

The z component of Eq. (1) evaluated at the centre of
sphere 1, i.e., at z = z1, with ξ = 0 and ξ = π gives

z1 + a1 = a sinh η1

cosh η1 − 1
; z1 − a1 = a sinh η1

cosh η1 + 1
. (2)

The angle ξ is defined as ξ = θ1 − θ2, and η = η1. Equa-
tions (2) can be used to express η1 and a in terms of the posi-
tion of the center of sphere 1, z1, and its radius a1,

a = a1 sinh η1; z1 = a coth η1. (3)

It follows that

cosh η1 =
√

1 + sinh2 η1 =
√

1 + a2

a2
1

(4)

and

eη1 = a

a1
+

√(
a

a1

)2

+ 1,

(5)

e−η1 = − a

a1
+

√(
a

a1

)2

+ 1.
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If in (2)–(5) subscript 1 is replaced by 2, these expressions
also hold for sphere 2, for which z2 and η2 are positive num-
bers.

The distance a is related to the centre-to-centre separation
h by

a =
√

h4 + (
a2

1 − a2
2

)2 − 2 h2
(
a2

1 + a2
2

)
4 h2

. (6)

Equations (2)–(5) defined for both spheres 1 and 2, can be
used to obtain η1 and η2,

cosh η1 =
√

1 + sinh2 η1 =
√

1 + a2

a2
1

= h2 + a2
1 − a2

2

2a1h
,

(7)

cosh η2 =
√

1 + sinh2 η2 =
√

1 + a2

a2
2

= h2 + a2
2 − a2

1

2a2h
.

It is also of interest to express the angle ξ in terms of θ1,s

which is the angle that the radial line from the center of sphere
1 makes with the +z axis, which can be found from the z

component of Eq. (1) evaluated on the sphere 1 (η = η1),

z = z1 + a1 cos θ1,s = a sinh η1

cosh η1 − cos ξ
(8)

solving Eq. (8) for cos ξ gives for sphere 1,

cos ξ = cosh η1 − a sinh η1

z1 + a1 cos θ1,s

= cosh η1 − a sinh η1

a coth η1 + a1 cos θ1,s

, (9)

where z1 = a coth η1 = a1 cosh η1.
The same derivation can be produced for sphere 2 to ob-

tain

cos ξ = cosh η2 − −a sinh η2

−a coth η2 + a2 cos θ2,s

. (10)

In the derivation that follows it will be necessary to con-
sider the case where a2 → ∞ to give a flat planar surface. For
a sphere with a radius of a1 (see Figure 2), the limit a2 → ∞
for Eq. (6) gives

a = lim
a2→∞

√
h4 + (

a2
1 − a2

2

)2 − 2 h2
(
a2

1 + a2
2

)
4 h2

= lim
a2→∞

√
(a1 + a2 + s)4 + (

a2
1 − a2

2

)2 − 2 (a1 + a2 + s)2
(
a2

1 + a2
2

)
4 (a1 + a2 + s)2

=
√

s(s + 2a1), (11)

the expression (11) for a is substituted into Eq. (4) to obtain
η1,

η1 = cosh−1

√
1 + a2

a2
1

= cosh−1

(
1 + s

a1

)
(12)

and

η2 = 0. (13)

FIG. 2. Schematic diagram of sphere-plane interactions: A sphere of dielec-
tric constant k1, radius a1, and net charge Q1 interacts with a planar surface
of dielectric constant k2 in a medium of dielectric constant km.

From Eq. (1),

ρ2 ≡ x2 + y2 = a2 sin2 ξ

(cosh η − cos ξ )2

on the plane, η = η2 = 0, and therefore

ρ2 ≡ x2 + y2 = a2 sin2 ξ

(1 − cos ξ )2
= a2 1 + cos ξ

1 − cos ξ

hence cos ξ on the plane takes the following form:

cos ξ = ρ2 − a2

ρ2 + a2
= ρ2 − s(s + 2a1)

ρ2 + s(s + 2a1)
, (14)

where the last equality follows by substitution from Eq. (11).

B. Expansion of the electric potential

The electric potential generated at any point in space due
to the presence of spheres 1 and 2 is given in Gauss form


(r) = K

∫
dQ

R
= K

∫
dQ1

R1
+ K

∫
dQ2

R2
, (15)

where K = 1
4πε0

≈ 9 × 109 Vm/C is a constant of propor-
tionality, and the integration is performed over the surfaces of
the spheres. The potential 
(r) is the sum of the contributions
from spheres 1 and 2, and vanishes at infinity. Equation (15)
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can be viewed as the time-independent, singular propagator
solution of the Poisson two-particle differential equation

�2ψ = −4πKσ . The Laplacian in bispherical coordinates has
the following form:19

�2 = (cosh η − cos ξ )3

a2 sin ξ

×
[

∂

∂ξ

(
sin ξ

cosh η − cos ξ

∂

∂ξ

)
+ sin ξ

∂

∂η

(
1

cosh η − cos ξ

∂

∂η

)
+ 1

sin ξ [cosh η − cos ξ ]

∂2

∂φ2

]
.

The charge density, σ , resides only on the surface of the sphere, i.e., it is defined by the local charge element on the surface of
the sphere, dQi.

The local charge element on the surface of the sphere can be expressed as

dQi = σi(cos ξ ′)a2 sin ξ ′dφ′dξ ′

(cosh ηi − cos ξ ′)2
(16)

and the electric potential (15) takes the form


 = K

∫ π

0

∫ 2π

0

σ1(cos ξ ′)a2 sin ξ ′dφ′dξ ′

(cosh η1 − cos ξ ′)2

1

R1
+ K

∫ π

0

∫ 2π

0

σ2(cos ξ ′)a2 sin ξ ′dφ′dξ ′

(cosh η2 − cos ξ ′)2

1

R2
. (17)

The first term in the electric potential (17) is singular for η = η1, i.e., when the force field point is on sphere 1. Similarly, the
second term is singular for η = −η2. The inverse distance appearing in each of the integrals in (17) can be further expanded in
terms of Legendre polynomials, Pn(x) = (− 1)nPn(− x), as

1

R
= 1√

2a

√
cosh η − cos ξ

√
cosh η′ − cos ξ ′

√
cosh(η − η′) − (cos ξ cos ξ ′ + sin ξ sin ξ ′ cos(φ − φ′))

= 1

a

√
cosh η − cos ξ

√
cosh η′ − cos ξ ′

(∑∞
n=0 e−(n+ 1

2 )(η−η′)Pn(cos ψ); η − η′ > 0∑∞
n=0 e(n+ 1

2 )(η−η′)Pn(cos ψ); η − η′ < 0

)
, (18)

where η′ = η1 for sphere 1 and η′ = −η2 for sphere 2; cos ψ = cos ξcos ξ ′ + sin ξsin ξ ′cos (φ − φ′). Integration of the inverse
distance (18) over the azimuthal angle φ′ gives

∫
dφ′

R
= 2π

a

√
cosh η − cos ξ

√
cosh η′ − cos ξ ′

(∑∞
n=0 e−(n+ 1

2 )(η−η′)Pn(cos ξ )Pn(cos ξ ′)∑∞
n=0 e(n+ 1

2 )(η−η′)Pn(cos ξ )Pn(cos ξ ′)

)
. (19)

It should be noted that the integration in (19) over the azimuthal angle φ′ implies that the charge density σ i(cos ξ ) in (16) is
independent of φ′. Substitution of the expansions (19) in the integral (15) yields a general expression for the electric potential
in bispherical coordinates


 = K

∫
σ1(cos ξ ′)a2 sin ξ ′dξ ′

(cosh η1 − cos ξ ′)2

2π

a

√
cosh η − cos ξ

√
cosh η1 − cos ξ ′

×
(∑∞

n=0 e−(n+ 1
2 )(η−η1)Pn(cos ξ )Pn(cos ξ ′); η − η1 > 0∑∞

n=0 e(n+ 1
2 )(η−η1)Pn(cos ξ )Pn(cos ξ ′); η − η1 < 0

+K

∫
σ2(cos ξ ′)a2 sin ξ ′dξ ′

(cosh η2 − cos ξ ′)2

2π

a

√
cosh η − cos ξ

√
cosh η2 − cos ξ ′

×
(∑∞

n=0 e−(n+ 1
2 )(η+η2)Pn(cos ξ )Pn(cos ξ ′); η + η2 > 0∑∞

n=0 e(n+ 1
2 )(η+η2)Pn(cos ξ )Pn(cos ξ ′); η + η2 < 0

. (20)

The general expression (20) can be simplified if the following coefficients are introduced:


i,n = 2πaK

∫ π

0

σi(cos ξ ′) sin ξ ′dξ ′

(cosh ηi − cos ξ ′)
3
2

Pn(cos ξ ′); i = 1, 2. (21)
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Further substitution of the coefficients 
i,n (21) into (20) leads to a simple and more general form of the electric potential


 =
√

cosh η − cos ξ

∞∑
n=0


1,nPn(cos ξ )

⎛
⎝ e−(n+ 1

2 )(η−η1); η − η1 > 0

e(n+ 1
2 )(η−η1); η − η1 < 0

+
√

cosh η − cos ξ

∞∑
n=0


2,nPn(cos ξ )

⎛
⎝ e−(n+ 1

2 )(η+η2); η + η2 > 0

e(n+ 1
2 )(η+η2); η + η2 < 0

. (22)

The electric potential inside and outside each sphere can be introduced as 
(in) and 
(out); more specifically, inside sphere 1 the
potential takes the form



(in)
1 =

√
cosh η − cos ξ

∞∑
n=0

(

1,ne

−(n+ 1
2 )(η−η1) + 
2,ne

−(n+ 1
2 )(η+η2)

)
Pn(cos ξ ), (23)

inside sphere 2



(in)
2 =

√
cosh η − cos ξ

∞∑
n=0

(

1,ne

(n+ 1
2 )(η−η1) + 
2,ne

(n+ 1
2 )(η+η2)

)
Pn(cos ξ ), (24)

and outside both spheres


(out) =
√

cosh η − cos ξ

∞∑
n=0

(

1,ne

(n+ 1
2 )(η−η1) + 
2,ne

−(n+ 1
2 )(η+η2)

)
Pn(cos ξ )

= 

(out)
1 + 


(out)
2 . (25)

The total charge on each sphere can be found by integrat-
ing over all angles as follows:

Qi,tot =
∫ π

0

∫ 2π

0

σi(cos ξ )a2 sin ξdφdξ

(cosh ηi − cos ξ )2

=
√

2a

K

∞∑
n=0


i,ne
−(n+ 1

2 )ηi , (26)

where the last equality follows from Eq. (21).

C. Distribution of the surface charge and application
of the boundary conditions

Using the orthogonality of Legendre polynomials, the
surface charge density, σ i, can be obtained from Eq. (21) for
sphere 1 as follows:

σ1(cos ξ ) = (cosh η1 − cos ξ )
3
2

4πKa

∞∑
n=0

(2n + 1)
1,nPn(cos ξ )

(27)

and for sphere 2,

σ2(cos ξ ) = (cosh η2 − cos ξ )
3
2

4πKa

∞∑
n=0

(2n + 1)
2,nPn(cos ξ ),

(28)

where cos ξ is defined by Eqs. (9) and (10).
The boundary conditions applied are identical to those

used previously in the spherical coordinate solution.17 Apart

from the condition that the electric potential vanishes at in-
finity (except for the case of a charged infinite plane), three
additional boundary conditions are applied, and shown here
using the surface of sphere 1 as an example. The first bound-
ary condition is continuity of the potential on the surface of
the sphere due to continuity of the tangential component of
the electric field

− 1

rs

∂


∂θ1,s

∣∣∣∣
rs=a−

1

= − 1

rs

∂


∂θ1,s

∣∣∣∣
rs=a+

1

, (29)

where a+
1 indicates a point on the outside of the sphere’s sur-

face, and a−
1 indicates a point on inside of the sphere’s surface.

Note that the potential on the surface of the spheres is not con-
stant. The second boundary condition is discontinuity of the
normal component of the electric field due to the presence of
a net charge on the surface of each sphere

4πKσ1 = ∂


∂rs

∣∣∣∣
rs=a−

1

− ∂


∂rs

∣∣∣∣
rs=a+

1

. (30)

Boundary conditions (29) and (30) are automatically satisfied
by the choice of electric potential described by Eq. (15).

The last boundary condition states that the normal com-
ponent of the dielectric displacement field due to the presence
of free charge on the surface of a sphere is discontinuous

4πKσf,1 = k1
∂


∂rs

∣∣∣∣
rs=a−

1

− km

∂


∂rs

∣∣∣∣
rs=a+

1

= constant.

(31)
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Eliminating ∂

∂rs

∣∣∣
rs=a−

1

from Eqs. (30) and (31) and transform-

ing to bispherical coordinate system gives

4πKσ1 = 4πK
σ1,f

k1
+

(
km

k1
− 1

)
cosh η − cos ξ

−a

∂
(out)

∂η

∣∣∣∣
η=η+

1

.

(32)

Note that ∂
∂n

= η̂. �∇ = 1
hη

∂
∂η

= cosh η−cos ξ

a
∂
∂η

. The minus sign
is necessary since η inside sphere 1 has a larger value than
when outside sphere 1, whereas the opposite is true for
sphere 2.

Substitution of Eqs. (25) and (27) on the left and right
side of Eq. (32) leads to the following expression for the co-
efficients of the potential (after equating the coefficients of the
Legendre polynomials and further simplifications)

√
2 aσ1,f e−(n+ 1

2 )η1

ε0

=
([(

n + 1

2

)

1,n cosh η1 − n

2

1,n−1 − n + 1

2

1,n+1

]
(km + k1) + sinh η1

2
(km − k1)
1,n

)

+
(
−

[(
n + 1

2

)

2,nfn cosh η1− n

2

2,n−1fn−1 − n + 1

2

2,n+1fn+1

]
(km − k1) + 
2,nfn

sinh η1

2
(km − k1)

)
, (33)

where the distance a is defined by Eq. (6), the coefficients

i, n are given by Eq. (21), and

fn = e−(n+ 1
2 )(η1+η2). (34)

Using the same expansion of the electric potential (25)
for sphere 2 and applying the corresponding boundary con-
ditions, as described above for the case of sphere 1, a com-
plementary expression for the coefficients of the potential is
obtained, which must follow from Eq. (33) by interchanging
subscripts 1 and 2.

D. The electrostatic force

The electrostatic force on sphere 1 due to the presence
of net electric charges residing on the surface of sphere 2 can
now be readily expressed as

F12 = K

∫
dQ1(x)

∫
dQ2(x2)

x − x2

|x − x2|3

= −K

∫
dQ1(x)∇

(∫
dQ2(x2)

1

|x − x2|
)

= −
∫

dQ1(x)ẑ
∂

∂z

(
K

∫
dQ2(x2)

1

|x − x2|
)

= −ẑ
∫

dQ1
∂


(out)
2

∂z
, (35)

where the third equality is due to cylindrical symmetry of the
problem, and the convention of a negative term for an attrac-
tive contribution to the force and a positive term describing
repulsion is used. The first integral takes into account the to-
tal charge residing on sphere 1, and the second integral is the
potential generated by the total charge residing on sphere 2.
The electric potential 


(out)
2 , generated by all charges residing

on sphere 2, is given by Eq. (25).

Transformation of the above equation to bispherical co-
ordinate system gives

F12 = −ẑ
∫

dQ1

(
1 − cos ξ cosh η

a

∂

∂η

− sin ξ sinh η

a

∂

∂ξ

)



(out)
2

∣∣∣∣
η=η1

, (36)

where dQi is defined by Eq. (16).
Substituting the electric potential 


(out)
2 , given by

Eq. (25), into (36) leads to the following final expression for
the electrostatic force (after the integration and some further
simplifications),

F12 = −ẑ
∫ π

0

σ1(cos ξ )a2 sin ξdξ

(cosh η1 − cos ξ )2
2π

√
cosh η1 − cos ξ

a

∞∑
n=0

× fn

(
n

2
Pn−1(cos ξ )eη1 −

(
n + 1

2

)
Pn(cos ξ )

+ n + 1

2
Pn+1(cos ξ )e−η1

)

2,n

= − 1

K
ẑ

∞∑
n=0

fn

(n

2

1,n−1e

η1

−
(

n + 1

2

)

1,n + n + 1

2

1,n+1e

−η1

)

2,n

= ẑ
∞∑

n=0

(Fn−1,n + Fn,n + Fn+1,n), (37)

where for the individual terms

Fm,n ∝ 
1,m
2,n, (38)

m takes on n − 1, n or n + 1. Using the aforementioned
boundary conditions, 
1, m, and 
2, n can be expressed in
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terms of σ 1, f and σ 2, f in the following form:


1,m = Aσ1,f + Bσ2,f ,

(39)

2,n = Cσ1,f + Dσ2,f .

Thus Fm, n is given by

Fm,n ∝ 
1,m
2,n

∝ (Aσ1,f + Bσ2,f )(Cσ1,f + Dσ2,f )

∝ ACσ 2
1,f + BDσ 2

2,f + (AD + BC)σ1,f σ2,f , (40)

which implies

Fm,n ∝ σ 2
1,f (41)

for a neutral plane of σ 2, f = 0. It follows that, for the interac-
tion of a charged sphere with a neutral planar surface,

F12 ∝ σ 2
1 ∝ Q1

2. (42)

III. COMPARISON BETWEEN THE SOLUTIONS IN
SPHERICAL AND BISPHERICAL COORDINATES

In order to validate the new solution, a comparison has
been made between electrostatic forces calculated using the
spherical coordinate and the bispherical coordinate solutions.
For this purpose, an example has been taken from cloud
physics,20–23 and the electrostatic force between a pair of
charged water droplets (k1 = k2 = 80) in air or vacuum (km

= 1) has been calculated. Each droplet carries an identical
charge of 200 e, but they have different radii: a1 = 1000 nm
and a2 = 2500 nm. Table I shows numerical results calcu-
lated using the two different coordinate systems, and as noted
earlier,24 the calculated force is negative at short separations,
which implies that the two like-charged spheres are attracted
to one another. As shown by this example, results from the
two different coordinate systems agree very well: an agree-
ment in the absolute value of the electrostatic force up to at
least 5 decimal places has been achieved for short surface-
to-surface separations (less than 200 nm), and at separation
distances of 300 nm and greater the level of agreement in-
creases to 10 decimal places. At 300 nm, the like-charged

TABLE I. Comparison of theoretical solutions for the electrostatic force
between two like-charged spheres obtained in spherical17 and bispherical
(present work) coordinate systems. Parameters for sphere 1 are: charge Q1

= 200 e, radius a1 = 1000 nm, dielectric constant k1 = 80; and for sphere
2: charge Q2 = 200 e, radius a2 = 2500 nm, and dielectric constant k2

= 80. The medium is vacuum with a dielectric constant km = 1. There are 50
and 110 terms in the Legendre polynomial expansions for the spherical and
bispherical solutions, respectively.

Surface-to-surface separation F12 (pN)

s (nm) Spherical solution17 Bispherical solution

100 − 1.4234709746 − 1.4234718673
200 − 0.6514501823 − 0.6514501829
300 − 0.3271645335 − 0.3271645335
1000 +0.1915076788 +0.1915076788
10 000 +0.0498774468 +0.0498774468

TABLE II. Convergence test for Eq. (37) calculating the electrostatic force,
F12. Column 1 shows the surface-to-surface separation, s, relative to the ra-
dius a1 of sphere 1, and column 2 shows the number of terms, n, in the sum-
mation of Eq. (37) required to achieve an accuracy of two decimal places in
the electrostatic force.

Surface-to-surface Number of terms
separation ( s

a1
) in expansion (37) (n)

10 2
1 10
0.1 100
0.01 1000

spheres continue to attract one another, but as their separa-
tion increases Coulomb repulsion begins to dominate and they
start to repel one another. This repulsion continues to make
its presence felt even when the surface-to-surface separation
reaches 10 000 nm. Although the bispherical solution offers
a level of precision which is comparable to that achieved us-
ing spherical coordinates, it can be seen from Table I that the
number of terms required in the Legendre-polynomial expan-
sion in bispherical coordinates is greater than that for the cor-
responding expansion in spherical coordinates.

The results presented in Table I show that the bispherical
coordinate solution presented here achieves excellent conver-
gence when compared with the earlier spherical coordinate
solution,17 for which convergence criteria have already been
established.17 However, what is most significant in the con-
text of this work is that convergence of the bispherical coor-
dinate solution still holds at the sphere-plane (a2 → ∞) limit,
where previously numerical problems have been encountered
in the spherical coordinate solution17 when the radius of ei-
ther sphere was taken to be infinite. In the presented bispheri-
cal coordinate solution, the number of elements in the matrix
defining a cut-off for the evaluation of the electrostatic force
is only 6n, and as the matrix is diagonally dominant it can be
inverted efficiently. A criterion on the selection of the number
of terms, n, to be included in order to achieve convergence of
the electrostatic force up to two decimal places is presented
in Table II.

IV. APPLICATIONS

Recent development of the atomic force microscope
(AFM) technique, which can be broadly classified as either
static or dynamic,9 has led to measurements of nano Newton
interaction forces between individual micrometer-size spher-
ical objects and atomically flat substrates.8–10, 25 It is gener-
ally assumed that the attractive interaction force between an
AFM tip and substrate has two components: a long-range
electrostatic force and a van der Waals force, where the
latter is believed to be dominant at short sphere-substrate
separations. However, for a number of reasons, quantitative
identification and separation of these contributions to the in-
teraction force is notoriously difficult. First, it is difficult to
control and fully characterize the exact geometry and asso-
ciated charge distribution of the AFM tip (and hence quan-
tify the electrostatic charging); however the ambiguities in the
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geometry of the interacting objects can be minimized by
means of attaching a micrometer-size particle directly onto
an AFM canteliver.26, 27 Second, separation of the electro-
static and van der Waals components to the interaction force
requires the use of different AFM techniques at short and
long separations between the tip and the substrate.9 The static
mode of AFM operation, which measures directly the force
between a particle mounted on the cantilever and substrate,
is mainly suited for long-range measurements. The dynamic
mode of AFM operation, on the other hand, estimates the
force gradient using a frequency modulation method and is
better suited for the measurement of very weak interaction
forces. Application of these AFM techniques assume that the
electrostatic forces: (a) are predominantly long-ranged and
therefore they can be eliminated or even ignored at short sep-
aration distances; (b) can be quantitatively understood and in-
terpreted using basic Coulomb models. In fact, both assump-
tions are too simplistic. The aim of this section is to provide
a rigorous assessment as to whether or not electrostatic in-
teractions make a major contribution to the attractive force
measured at short sphere-plane separations.

Two well-studied experimental examples of electrostatic
force measurements between a charged sphere and a neu-
tral, planar surface have been employed in a numerical study,
where the bispherical solution presented in Sec. II has been
used. These examples are: (i) the electrostatic force between
a positively charged polystyrene sphere and a neutral graphite
surface;8, 9 (ii) the electrostatic force between a positively
charged lactose sphere and a neutral glass surface.10 In both
cases, AFM measurements8–10 have revealed an attractive
force between the sphere and the planar surface at short sep-
arations, where this attraction has been attributed to a combi-
nation of electrostatic and van der Waals interactions. In our
calculations, the medium between the sphere and the planar
surface is taken to be vacuum with a dielectric constant of
km = 1 (see Figure 2 for a schematic diagram illustrating
the geometry of the problem). For each example, the electro-
static force has been calculated as a function of the surface-
to-surface separation, s, between the sphere and the planar
surface using parameters summarized in Table III. The depen-
dence of the force on the square of the charge Q1, as predicted
by Eq. (42), has also been investigated. In addition, the sur-
face density of total charge has been calculated as a function
of both the radial position y for the plane and the polar angle
θ1,s for the sphere (see Figures 1 and 2).

For the interaction between polystyrene particle and
graphite surface the electrostatic force has been calculated
(Figure 3(a)) for a sphere of charge Q1 = 10 000 e and
radius a1 = 3000 nm (experimental values9) and com-
pared with other theoretical models. The electrostatic force,
shown as curve (b1) in Figure 3(b), between a grounded
conducting surface and a sphere of radius 3 μm with a
charge of Q1 = 10 000 e is grossly underestimated at short
separations.9 The model presented in this work, shown as
curve (b2) in Figure 3(b), which assumes a uniform distri-
bution of free charge on the surface of each sphere, predicts
a much longer range of the electrostatic force than the em-
pirical models9 used to calculate the force between a con-
ducting surface and a sphere on which the charge is local-

FIG. 3. Electrostatic force, F, between a positively charged polystyrene
sphere and a neutral graphite surface in vacuum (km = 1). (a) The calcu-
lated electrostatic force (solid line) as a function of the surface-to-surface
separation, s, for a net charge of Q1 = 10 000 e on the polystyrene sphere.
The solid line in the inset corresponds to the electrostatic force calculated for
Q1 = 1000 e, and it demonstrates the predicted Q2-dependence of the force
between a charged sphere and a neutral planar surface. The dashed lines rep-
resent the image charge model solution for a point charge and conducting
surface. (b) Comparison of theoretical results: (b1) the electrostatic force be-
tween a grounded conducting surface and a sphere of radius 3 μm with a
charge of Q1 = 10 000 e;9 (b2) the calculated electrostatic force between a
dielectric surface (graphite) and a sphere (polystyrene) of radius 3 μm with a
charge of Q1 = 10 000 e (present work); (b3) the electrostatic force between
a grounded conducting surface and a sphere of radius 3 μm with a charge of
(b3) but with the effective radius of Reff = 120 nm.9

ized over a certain effective radius (curves (b3) and (b4) in
Figure 3(b)).

For the lactose particle-glass electrostatic interaction, the
electrostatic force has been calculated (Figure 4) for a sphere
of the estimated charge Q1 = 1.66 × 105 e (no experimen-
tal data for the charge on lactose particle is available) and
radius a1 = 5000 nm (experimental value10). The value of
Q1 used in the calculations of the force lies within the al-
lowed range of experimental charges as it is two orders of
magnitude smaller than the value of the maximum possible
negative charge (−1.56 × 107 e) and three orders of magni-
tude smaller than that of the maximum positive charge (3.65
× 108 e).29 As shown in Figure 4(b), at short separation dis-
tances the calculated force is comparable in magnitude with
the experimental electrostatic force10 measured immediately
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TABLE III. The values of the dielectric constants, k1 (sphere) and k2

(plane), and the sphere radius, a1, for the studied applications of polystyrene-
graphite and lactose-glass interactions.

Interacting object Dielectric constant Radius (nm)

Polystyrene sphere k1 = 2.6 a1 = 3000
Graphite surface k2 = 12.0
Lactose sphere k1 = 6.0 a1 = 5000
Glass surface k2 = 2.0

after tribocharging at the relative humidity of RH = 0.1%.
However, the experimental force decays much faster with the
separation distance than the calculated result. Experiments10

for the lactose-glass example suggest a sensitive dependence
of the electrostatic force on relative humidity (RH): as RH
increases, the electrostatic force drops sharply, which might
have been caused by a loss of charge to water vapour and wa-
ter ions in humid air,29 as well as the electrostatic screening
of the force by water (dielectric constant = 80). These con-

FIG. 4. Electrostatic force, F, between a positively charged lactose sphere
and a neutral glass surface in vacuum (km = 1). The calculated electrostatic
force (solid line) as a function of the surface-to-surface separation, s, for a net
charge of Q1 = 1.66 × 105 e on the lactose sphere is shown as solid line; the
dashed line in (a) corresponds to the image charge model solution for a point
charge; the dotted line in (b) corresponds to an extraction of experimental data
from Bunker et al.10 The fast decay of the measured force with the separation
distance as compared to the present theoretical data (solid line) is thought to
be related to the relative humidity of air in the experiment.

siderations might account for the discrepancy between exper-
iment and theory as the calculated force corresponds to zero
RH. However, experiments10 also show that charge generated
on the surface decays with time, and the contributions from
charge decay and RH effects have not been separated.

In both examples, the electrostatic force between a
charged sphere and a neutral plane is attractive at all sep-
arations (see Figures 3 and 4 for the polystyrene-graphite
and lactose-glass examples, respectively) as it arises from
anisotropies in the induced multipole interactions. The ob-
tained numerical results are in agreement with Eq. (42) for the
Q2

1 dependence of the electrostatic force F between a charged
sphere and a neutral plane. As illustrated in the inset of
Figure 3(a), with s → 0 the limiting value of the force drops
by a factor of 100, from 650 pN to 6.5 pN, if the charge Q1

decreases by a factor of 10, from 10 000 e to 1000 e. At large
separation distances, the calculated electrostatic force is in ex-
cellent quantitative agreement with the results obtained for
a point charge using the image charge model.28 As demon-
strated in both Figures 3(a) and 4(a), the presented bispheri-
cal coordinates solution for a finite size sphere and the corre-
sponding image charge solution for a point charge28 given by

F12 = 1

4πεo

Q1

(2s)2

[
Q1(1 − k2)

(1 + k2)

]
(43)

approach a quantitative agreement at large separation dis-
tances. The Q2

1 dependence of the force, as predicted by the
presented bispherical solution, becomes immediately clear
from the image charge solution (43). At the point charge limit,
the electrostatic force is always attractive for a neutral but po-
larizable planar surface (such as those described in the experi-
mental examples considered here), because the sign of the im-
age point charge is opposite to that of its real counterpart. This
accounts for the absence of the attraction-repulsion transition
in the electrostatic interaction which occurs, for example, be-
tween a pair of charged polarizable spheres17 or between a
charged sphere and a charged surface.

The results presented in this section suggest that the elec-
trostatic force makes a major contribution to the short-range
attraction force between a charged sphere and a planar sur-
face, and that this attraction arises from the induced polariza-
tion of bound charge on both the surface and the sphere. In
the vicinity of a positively charged sphere, a negative polar-
ization charge is induced on the neutral plane, and the effect
is most noticeable at the point closest to the sphere’s surface,
i.e., at y = 0. This effect is illustrated in Figure 5 by the ex-
ample of a positively charged polystyrene sphere interacting
with a neutral graphite surface, where the charge distribution
on the graphite surface is plotted as a function of the radial
position y (Figure 5(a)). It can be seen that the charge den-
sity at y = 0 is most negative. The induced negative charge
on the planar surface, in turn, induces polarization of charge
on the surface of polystyrene sphere (Figure 5(b)) so that
the density of positive charge is highest at the point on the
sphere closest to the planar surface, i.e., at a polar angle of θ1,s

= π (Figure 2). For a given value of surface-to-surface separa-
tion, the mutual polarization of bound charge continues until
the system reaches equilibrium, where the equilibrium state
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FIG. 5. Charge distribution on the surface of polystyrene sphere (Q1 = 1000
e) and planar, neutral surface of graphite, which are separated by s = 1100
nm: (a) the surface density of total charge on the graphite surface as a func-
tion of the radial position y; the inset illustrates the distribution of the charge
density in the radial direction; (b) the surface density of total charge on the
polystyrene sphere as a function of the polar angle θ1, s.

is described in quantitative detail by the theoretical solution
presented here.

V. CONCLUSIONS

A general solution for the electrostatic force between two
charged, dielectric spheres has been derived using bispherical
coordinates and has been shown to be consistent with an ear-
lier solution17 obtained using spherical coordinates. An ad-
vantage of the new bispherical coordinate solution is that, by
assigning one sphere an infinite radius, it is readily adapted
to the case of a charged dielectric sphere interacting with a
planar dielectric surface. Numerical results show that, if the
space (medium) between a charged sphere and a neutral pla-
nar surface is vacuum, the electrostatic force between the two
entities is attractive at all separations. This result suggests that
an electrostatic force is one of the main components to the
short-range attraction between a charged sphere and a surface.
However, what the calculations also reveal (see, for exam-
ple, Figure 3(a)) is that the electrostatic attraction between a

charged sphere and a neutral surface extends out to a surface-
to-surface separation of at least 10 000 nm (10 μm), which is
more than three times the radius of the sphere and is much fur-
ther than what has been determined from experimental results.
The calculations suggest that attraction arises from the in-
duced polarization of bound charge on both the sphere and the
surface. Therefore, the discrepancies between theory and ex-
periment, as observed for both experimental examples, might
have also been contributed from a decay of surface charge on
the spheres.
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