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Abstract
A formula was obtained that describes asymptotically forbidden quasimolecular
optical transitions in the frame of the semiclassical approach. It is particularly
relevant for the weak extrema in the difference between the ground- and excited-
state interaction potentials. When averaged over impact parameters and velocity
distribution the formula agreed reasonably well with the recent experimental
data for the Ca(41S → 31D) + He transition.

This paper is devoted to the problem of analytical descriptions of quasimolecular optical
transitions which are asymptotically forbidden at large interatomic distances R.

It is well known that spectral line shapes (SLS) produced by the allowed atomic transitions
show mainly Lorentzian distributions with far wings attributed to collisions with buffer gas
atoms (Sobelman 1979). In contrast, little is known about the SLS for transitions caused by
a pair of colliding atoms and which are forbidden at large R values (asymptotically forbidden
transitions). A typical example for such transitions, which can be referred to as quasimolecular
optical transitions, is optical depopulation of metastable atoms, especially those of the second
group and of rare gases. The analytical description of asymptotically forbidden transitions
presents great difficulties in view of the considerable difference in the behaviour of the potential
energy curves and the optical transition moments, which are required to complete the SLS
calculation. For instance, the transition moments in this situation cannot be approximated by
constant values as in the case of allowed transitions.

However, in many cases the quasimolecular optical transitions result from a change of
angular momentum during the collision (Devdariani 1993) due to predominantly short-range
repulsion. Here, potential energy curves and optical transition probability (or radiation width
�(R)) can be reasonably approximated by exponential functions. It should be noted that
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an exponential approximation fits naturally into the description of quasimolecular optical
transitions in highly ionized plasmas (Devdariani et al 1996). Our study has revealed that
a general formula which covers the central part of the spectral line, the extremum vicinity and
the far wings, and also takes into account the fast exponential change in the state radiative
width, can be obtained with the use of the Morse potential for the potential energy difference.
The Morse approximation has been also used (Sato 1995) for spectral simulations.

The required formula for the transition amplitude (in atomic units) with a frequency shift
�ω = ω − ω0, where ω0 is the position of the excited level in the limit of separated atoms,
has been obtained in the framework of first-order perturbation theory:
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where t0 → −∞, �U(R) = U ∗(R)−U0(R) and where U ∗(R) and U0(R) are potential energy
curves for the excited and ground states with an accidental degeneracy as R → ∞, and R(t)

is a classical trajectory. The approach can be considered as a Fourier-transform of a transition
dipole moment calculated with time-dependent quasimolecular wavefunctions. According to
the discussion above we use a Morse potential for the potential energy difference:

�U(R) = d(2e−αR(R−Rex) − e−2αR(R−Rex)), (2)

where d, Rex are the potential barrier height and the position of its extremum, respectively, and
where an exponential approximation to the radiation width is given by

�(R) = γRe−2βR(R−Rex), (3)

where αR, βR and γR are constant values. In addition, the approximation (2) allows us to treat
the problem of SLS features produced by weak extrema, which cannot be solved within the
limits of the parabolic approximation for �U (Szudy and Baylis 1997). For the straight-line
trajectories at zero impact parameter for which R = vt , the transition amplitude is given by:
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is a real phase, � is a gamma function and Dp(z) is a parabolic cylinder function which may
be expressed in terms of regular Kummer hypergeometric functions (Abramowitz and Stegun
1970):
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where we define:
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First we note that for small values of x, the transition amplitude (4) may be simplified to:
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In the limit of small values of x such that αx2eαRRex → 0 and the quantity αx2e2αRRex is finite,
expression (7) describes the transition amplitude for the spectra produced by an exponential
potential energy term withC = de2αRRex in place ofx2 (Devdariani et al 1977). According to (7)
the SLS is non-symmetrical. The blue wing of the profile is produced by optical transitions
in the classically forbidden region and its intensity decreases as exp(−π�ω/α), whereas the
red wing results from transitions in the classically allowed region with the intensity declining
as −1/�ω. The central part of (7), where |�ω/α| < 1, is determined by∣∣∣∣�

(
− i�

2

)∣∣∣∣
2

=
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(
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2

.

Both parameters α and β are atomic values which do not include the interaction with light and
they are mainly governed by the exchange interaction, that is β/α ∼ 1; consequently
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Strictly speaking the last expression holds for α = β only, but, in any case, typically we
have |b(�ω)|2 ∼ |�(α/2β)|2 ∼ 1 at the maximum of the spectral distribution. Therefore,
we conclude that the SLS of asymptotically forbidden quasimolecular transitions is rather flat
and its central part is close to the Lorentzian distribution with velocity-dependent FWHM
�ω1/2 = (

√
8/π)αRv.

The SLS produced by asymptotically allowed quasimolecular transitions can be described
by equation (1) with the radiation width �(t) approximated by its atomic value �0. The value �0

is to be included in the exponent of equation (1) in order to account for radiation depopulation
during the collision. This leads at once to the sharp Lorentzian distribution with a velocity-
independent half-width (Devdariani et al 1996), because in this case �0/2α � 1 and
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In general, simulations reveal that for x � 2.5 only a few terms in equation (5) are
necessary to get a perfect description for the SLS including the region of oscillations due
to the occurrence of two saddle points in the integral (1) under the approximation (2) or, in
other words, of two Condon points (Szudy and Baylis 1997). Figure 1 shows the results for
spectrum simulations calculated on the basis of equations (4)–(6) for β/α = 0.54 and various
small values of x, along with the limiting case of equation (7).

In order to apply the results obtained with the use of equation (4) to the experimental data
in gas cell conditions with the temperature T , one needs to average a spectrum |b(�ω)|2 over
the impact parameters ρ and kinetic energies E of colliding atoms, assuming a Maxwellian
distribution over the energies. The approach of averaging the spectral profiles of type (1)
has already been discussed (Bichoutskaia et al 2001). It has been shown that the intensity of
radiation I and the absorption coefficient K are proportional to the average profile

〈|b(�ω, T )|2〉 = 1

2

∫ ∞

0
e−t

∣∣∣∣b
(

�ω, v =
√

2kT t

µ

)∣∣∣∣
2

dt, (10)

where T is the temperature and µ is the reduced mass of the colliding atoms. For the absorption
coefficient we have:

K = g(�∗)
g(�)

p(�)A(R0, T ) · S(ω, T ), (11)

where the factor
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4
exp

(
�ω

kT

)
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Figure 1. Spectrum profiles for |b(�ω)|2 for asymptotically forbidden quasimolecular transitions
with the use of the Morse potential (2) as a difference potential function for different values
of parameter x: 1: 0.12, 2: 0.4, 3: 1.2, 4: 2.5. Stars, ∗, represent numerical calculations in
the Fourier-approach; lines are analytical results, solid using formulae (4)–(6) and broken using
formula (7).

determines the shape of the spectral line; p(�) = g(�)/g(J ) is the probability of the formation
of quasimolecules with projection � in the ground state; g(�∗) (or g(�)) is a statistical
coefficient of the quasimolecular state with projection �∗ (or �). The factor

A(R0, T ) = πvR2
0 exp

(
−U ∗(R0)

kT

)
(13)

defines the spectrum intensity. The absorption coefficient (11) has been derived from the
assumption that the radial velocity of the relative movement of the atoms is a constant in the
vicinity of a point R0 which is the most significant region of the spectrum. In our case the
centre of the non-adiabatic region is naturally taken as the point R0, where quasimolecular states
produced by the 4s4p1P and 4s3d1D atomic states are fully mixed by the Ca–He interaction.
Note that R0 = 7 in the case of the m = 0 projection and R = 3.6 for m = 1, see also
Bichoutskaia et al (2001) for an extended discussion.

As a specific example we have chosen the reaction

Ca(4s3d, 1D) + He(11S0) ↔ Ca(4s2, 1S0) + He(11S0) + h̄ω0, (14)

where ω0 = 21 850 cm−1. The reason is that this reaction has been investigated both
experimentally and theoretically (Bichoutskaia et al 2001) for absorption in a semiclassical
approach based on a numerical calculation of the transition amplitude (1). A previous study
of the potential energy curves and radiation widths involved (Bichoutskaia et al 2000) led to
the following parameters: αR = 0.59, βR = 0.32, γR = 2.77 × 10−10, d = 10−3, Rex = 8.2
and R0 = 7.0. For the temperature T = 1000 K used in the experiments x̄ = √

d/ᾱ = 1.2
(ᾱ = αR

√
8kT /πµ).
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Figure 2. Absorption spectrum for the asymptotically forbidden Ca(4s2, 1S0 → 4s3d, 1D2)–He
quasimolecular transition. Curve 1 shows calculations using the analytical formula (4), averaged
over the impact parameters and the energies of colliding particles (10)–(13) (the broken line is the
same, but with substitution of R0 → RC); stars represent numerical calculations in the Fourier-
approach and curve 2 is the experimental data of Bichoutskaia et al (2001).

Figure 2 shows analytical estimates (4)–(6), (10)–(13) for the absorption spectrum of the
forbidden optical transition Ca(4s2, 1S0 → 4s3d, 1D2)–He (solid curve 1) and the experimental
spectral line of Bichoutskaia et al (2001) (solid curve 2). As one can see, the results are in
good agreement not only regarding shape, but also regarding absolute value. On the scale of
figure 2 the analytical results for the spectrum coincide with the accurate calculation in the
semiclassical Fourier-approach using the numerical procedure of Bichoutskaia et al (2001),
indicated by stars. We note that the rough estimates of the FWHM mentioned above give
�ω1/2 = 129 cm−1 in contrast to the experimental value 250 cm−1. In order to indicate the
influence of the parameter R0 on the spectrum profile in the region of a real Condon point RC

(the red wing of the spectrum) we have performed the calculations replacing the fixed parameter
R0 by a different value of RC for each frequency. The broken line in figure 2 represents the
results of the refined calculation, which do not affect the profile shape near the maximum.

Figure 3 demonstrates the influence of spectrum averaging, i.e. substitution of
〈|b(�ω, T )|2〉 by |b(�ω, v = √

8kT /πµ)|2 in the expression for radiation intensity

I (�ω, T ) = 2p(�∗)A(R0, T )〈|b(�ω, T )|2〉, (15)

for different values of d; all other parameters are identical to those for the Ca–He case. The
results of spectrum averaging are depicted in figure 3 by solid lines for three selected heights of
potential barrier d = 1×10−4, 1×10−3 and 6×10−3 (for comparison the dotted curve shows the
non-averaged spectrum calculated with formula (4)). One can see that the spectrum averaging
leads to the smoothing of oscillations, but it preserves the main characteristic peculiarities of
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Figure 3. The effect of spectrum averaging on the emission spectral line for asymptotically
forbidden quasimolecular transitions with the use of the Morse potential (2) as a difference potential
function for different values of d: a: 1 × 10−4, b: 1 × 10−3, c: 6 × 10−3 and T = 1000 K. Dashed
curves are calculations based on a formula using the general formulae (4)–(6) for a and b and on a
formulae (4), (16) for c, solid curves represent averaged contours of the spectral line (10), (15).

the spectrum. It should be stressed that equations (5) and (6) do not apply in the case of higher
potential barriers (x̄ > 2.5) and consequently a great number of oscillations. We found that
an asymptotic expression given by Gunninen and Makarov (1962), namely

Di�(z) = exp
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2z2
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zi� −
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�(−i�)
exp
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4
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where z = 2xe− 3iπ
4 , was appropriate to calculate the profiles in this case. In the case of

x̄ > 2.5 the width of the distribution is determined by d rather than by α and the spectrum
intensity decreases respectively.

In conclusion we have obtained the semiclassical formula (4) that describes the SLS of
asymptotically forbidden quasimolecular transitions. The formula has been derived with the
use of the Morse potential for the potential energy difference and is particularly useful for
describing weak extrema in potential energy curve differences, which are typical for atoms
in metastable states. The far wings of the spectrum are also sensitive to the behaviour of the
potential energy curves; however in the case of forbidden transitions the influence of the long-
range interaction is negligible due to the small value of the radiation width. It is found that the
intensity distribution is rather flat and close to the Lorentzian shape in the central part of the
spectral line. The FWHM varies in proportion to the collision velocity and is inversely related
to the radius of the exchange interaction of the atoms. Being averaged over impact parameters
and velocity distributions the formula agrees reasonably well with the recent experimental data
for the Ca(41S → 31D) + He transition.
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