
This article was downloaded by:[University of Nottingham]
On: 1 August 2008
Access Details: [subscription number 731856714]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Reviews in Physical
Chemistry
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713724383

Intermolecular potentials from supermolecule and
monomer calculations
Richard J. Wheatley a; Akyl S. Tulegenov a; Elena Bichoutskaia a
a School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK

Online Publication Date: 01 April 2004

To cite this Article: Wheatley, Richard J., Tulegenov, Akyl S. and Bichoutskaia,
Elena (2004) 'Intermolecular potentials from supermolecule and monomer
calculations', International Reviews in Physical Chemistry, 23:1, 151 — 185

To link to this article: DOI: 10.1080/014423504200207772
URL: http://dx.doi.org/10.1080/014423504200207772

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713724383
http://dx.doi.org/10.1080/014423504200207772
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f N
ot

tin
gh

am
] A

t: 
12

:0
0 

1 
A

ug
us

t 2
00

8 

Intermolecular potentials from supermolecule

and monomer calculations

RICHARD J. WHEATLEY{, AKYL S. TULEGENOV and
ELENA BICHOUTSKAIA*

School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK

The use of monomer properties to improve supermolecule calculations
of intermolecular potentials is reviewed. For Van der Waals dimers, the MP2
supermolecule method is too inaccurate for most purposes, and the CCSD(T)
supermolecule method requires too much computer time for large molecules.
Using perturbation theory to analyse the MP2 supermolecule energy shows that
the second-order dispersion energy is the main source of the inaccuracy. It is
shown that the dispersion energy can be improved by using more accurate
dispersion energy coefficients which can be obtained from monomer frequency-
dependent polarizabilities. The supermolecule MP2 electrostatic and exchange-
repulsion interaction energies can also be recalculated or scaled to a higher level of
theory, using monomer charge densities. Applying these corrections to the MP2
supermolecule energy does not require much additional computer time, and gives
potential energy surfaces with comparable accuracy to supermolecule CCSD(T)
calculations. Possible extensions of the method to different supermolecule methods
and to larger molecules are discussed.
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1. Background

Hydrogen bonds and Van der Waals bonds hold collections of molecules
together to form macroscopic molecular assemblies such as liquids, solutions and
molecular solids, and microscopic molecular assemblies such as dimers, trimers
and clusters. The bonds between molecules are not formed primarily by sharing of
electrons, and they are therefore quite different from the covalent bonds which hold
atoms together to form the individual molecules. The relatively weak attraction
between closed-shell molecules means that intermolecular bonds are not rigid, and
can be easily deformed or broken at room temperature. The structural, thermal
and dynamical behaviour of molecular assemblies depend on the intermolecular
potential which describes the strength and direction of the intermolecular bonds.
Calculating or measuring the intermolecular potential is the most important step in
understanding these properties.

Intermolecular potentials have been obtained from experimental properties
including gas non-ideality, collision cross-sections [1] and Van der Waals spectra
[2, 3], and from theoretical calculations [4, 5] based on quantum chemistry. Experi-
mental and theoretical methods are complementary, with experiments typically
giving a smaller number of relatively accurate results, and calculations giving a
larger number of less accurate results which can be refined and improved by
comparison with experiment. Recently, the increase in computer power has seen
theory play a more dominant role, and this review concentrates on theoretical
calculations of intermolecular potentials.

Calculating intermolecular potentials is notoriously difficult. For covalent bonds,
it is often adequate to know the equilibrium bond length and bond energy, but this
is not the case for the highly non-rigid bonds between molecules, which can sample
geometries far from equilibrium as a result of zero-point and thermal effects. Even
for the simplest case of two molecules, the intermolecular potential energy surface is
a function of up to six coordinates. Obtaining this surface computationally usually
involves interpolation between individual calculations of the intermolecular poten-
tial at different geometries, and for a six-dimensional potential energy surface,
thousands of separate calculations may be required to make the interpolation
sufficiently accurate.

The nature of the bonding in Van der Waals molecules also complicates theo-
retical calculations of the intermolecular potential. The Hartree–Fock (HF) method
describes covalent bonding reasonably well as a first approximation, and it can be
improved by calculating the electron correlation using either density functional theory
(DFT) or more expensive and more accurate post-Hartree–Fock methods. However,
Van der Waals bonding is entirely the result of electron correlation, and the Hartree–
Fock method predicts no Van der Waals attraction between molecules. Density
functional theory gives ‘local’ correlation, but the correlation in Van der Waals bonds
is ‘non-local’, so density functional theory also predicts no Van der Waals attraction.
It is therefore necessary to use post-Hartree–Fock methods to obtain the electron
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correlation. These are often prohibitively demanding of computer resources, espe-
cially considering the number of different calculations required to cover the potential
energy surface, and the accuracy of each calculation converges slowly with the size and
expense of the method, because a percentage error in the intermolecular correlation
energy gives a similar percentage error in the intermolecular potential.

Since high-accuracy theoretical calculations may not always be feasible, this
review addresses the possibility of modifying relatively low-cost calculations of
intermolecular potentials to improve their accuracy. The low-cost theoretical method
chosen as the starting point may depend on the circumstances, but the method
considered in most detail here is second-order Møller–Plesset perturbation theory
(MP2). This method gives reasonable accuracy relative to the amount of computer
time that it uses. MP2 calculations take longer than HF or DFT calculations, but
give much better accuracy, whereas coupled-cluster (CCSD) calculations take longer
than MP2 calculations, but usually do not give better accuracy. The best accuracy is
obtained from CCSD(T) calculations, but these are very time-consuming, even for
small molecules. It is therefore reasonable to use MP2 to obtain a first approxima-
tion to the intermolecular potential. However, MP2 calculations can still give errors
of up to 50% in weak Van der Waals bond energies.

To improve the results of MP2 calculations, the intermolecular potential
is divided into components (including electrostatic, induction, dispersion and
exchange-repulsion energies) using perturbation theory. This is described in
section 2.1. The results provide a link between supermolecule methods, where
the intermolecular potential is calculated as a difference between the energy of the
molecular assembly and the energies of its constituent molecules, and perturbation
methods, where the intermolecular potential is calculated as a sum of different
components. Perturbation methods are reviewed briefly in section 2.2.

Both supermolecule and perturbation methods can be time-consuming, and they
have complementary strengths and weaknesses. Perturbation methods can be used
to obtain accurate low-order contributions to the intermolecular potential; this is
discussed in section 3.1. However, high-order contributions cannot be calculated
efficiently. Supermolecule methods produce a sum of low-order and high-order
contributions, but the accuracy of the low-order contributions to the energy is
generally less than can be obtained using perturbation theory. In the main part of
this review, section 3.2, strategies for combining supermolecule and perturbation
methods are discussed. The most recent contributions made to this area by our
research group are the SPT and SIMPER methods. These are reviewed in detail in
section 3.2.2. Results obtained from these methods are presented in section 4, and
it is shown that the SIMPER method, which takes not much more computer time
than MP2 supermolecule calculations, improves the accuracy of MP2 intermolecular
potentials substantially, making them comparable with the accuracy of CCSD(T)
supermolecule calculations.

2. Components of the intermolecular potential

The general principles underlying the division of supermolecule calculations
of the intermolecular potential into Coulomb and exchange-repulsion parts are
introduced in this section. A Rayleigh–Schrödinger perturbation expansion gives
the familiar components of the Coulomb energy, which can be related to properties
of the interacting molecules. Full details are given for the Hartree–Fock and second-
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order Møller–Plesset methods. Methods for calculating individual components of
the intermolecular potential are reviewed, and some common problems are
identified.

A supermolecule method involves calculating the energies EA,EB, . . . of the
individual molecules A,B, . . . , and the energy E of the ‘supermolecule’ AB . . . , and
deducing the intermolecular potential �E. For a dimer,

�E ¼ E � EfABg
A � EfABg

B ð1Þ

where EfABg
A is the energy of molecule A calculated in the dimer-centred basis set,

to correct for basis set superposition error. If the energies are calculated using an
expansion of the wave function in basis functions centred on the nuclei of A and B,
it is possible to define a Coulomb interaction energy,

�ECoul ¼ ECoul � EA � EB: ð2Þ

The exchange-repulsion interaction energy is then obtained from

�Eexch ¼ �E ��ECoul: ð3Þ

The Coulomb interaction energy defined in equation (2) is not affected by basis set
superposition error, unlike the total interaction energy defined in equation (1). It is
therefore necessary to calculate the energiesEA andEB in the dimer-centred basis set in
equation (1), and in the monomer-centred basis set in equation (2). If the energies EA

and EB are defined in the same way in the two equations, then the exchange-repulsion
energy as defined by equation (3) contains basis set superposition error, and is gen-
erally found to be unphysically negative at medium-to-large intermolecular distances.

In equation (2), the dimer ‘Coulomb’ energy, ECoul, is calculated in the same
way as the supermolecule energy E, but the Coulomb calculation ‘distinguishes’ the
electrons of A from the electrons of B (that is, the Pauli principle is not applied
between them), and the electrons of A are restricted to orbitals defined by basis
functions on A, and similarly for B. In practice, this can be achieved by ignoring
all integrals which involve products of basis functions on A and B. This includes
intermolecular overlap, kinetic energy and nuclear attraction integrals. Electron
repulsion integrals ð��j��Þ are ignored unless the orbital � is on the same molecule
as �, and � is on the same molecule as �. In post-Hartree–Fock methods based on
substitution of occupied by virtual orbitals, each occupied/virtual orbital pair must
belong to a single molecule.

At the Hartree–Fock level, the dimer Coulomb energy is variational, and is
calculated by minimizing the energy of a dimer Coulomb wave function of the form

 Coul,HF ¼  A, Coulð1, . . . , nAÞ B, CoulðnA þ 1, . . . , nA þ nBÞ, ð4Þ

where nA is the number of electrons of A, nB is the number of electrons of B,  A, Coul

and  B, Coul are determinants of molecular orbitals of A and B, and these molecular
orbitals are linear combinations of basis functions of A and B respectively. The
exact dimer Hamiltonian is used in the calculation, and the molecular orbitals of
each molecule therefore include the response to the Coulomb potential of the other
molecule. In perturbation theory, this response is correct to all orders of the inter-
molecular interaction.

At the MP2 level, the Coulomb wave function is written as a sum of the Coulomb
Hartree–Fock wave function from equation (4), plus three different types of double
excitation: double excitations on A, double excitations on B, and simultaneous single

R. J. Wheatley et al.154
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excitations on both A and B. Like the Coulomb Hartree–Fock wave function, these
are all direct products of two determinants, one for each molecule, and they are
constructed from the Coulomb Hartree–Fock molecular orbitals. The usual MP2
equations are used to obtain the amplitudes and the resulting energy.

Coulomb and exchange-repulsion interaction energies can be calculated in a
similar way for other post-Hartree–Fock methods, but no results have yet been
reported in the literature.

2.1. Analysing supermolecule calculations using perturbation theory
In the Coulomb approximation, it is possible to define the unperturbed system and

the perturbation uniquely, and to obtain contributions to the Coulomb interaction
energy at different orders of perturbation theory. The unperturbed Hamiltonian,
Hð0Þ, is the sum of the monomer Hamiltonians of A and B, and the perturbation,
V ¼ H �Hð0Þ, is the sum of all the intermolecular Coulomb interactions between
electrons and nuclei. The zero-order energy is then EAþEB, calculated in the
monomer-centred basis sets, and the Coulomb interaction energy, �ECoul, can be
expanded using Rayleigh–Schrödinger perturbation theory as a sum of first-order,
second-order and higher-order terms in V. The first-order term, �E

ð1Þ
Coul, is the clas-

sical electrostatic interaction energy, and the second-order term, �E
ð2Þ
Coul, is a

sum of induction and dispersion components, �E
ð2Þ
ind and �E

ð2Þ
disp. Explicit expressions

for these and higher-order components of the Coulomb energy can be obtained
for variational supermolecule methods such as Hartree–Fock (HF) and configura-
tion interaction (CI), and also for non-variational methods such as Møller–Plesset
(MP) and coupled-cluster (CC), using a Lagrangian formalism. Details for the
Hartree–Fock and MP2 methods are given here.

The general expression for the Hartree–Fock Coulomb energy is

ECoul,HF ¼ h0jJj0i, ð5Þ

where j0i ¼ j Að1, . . . , nAÞ BðnA þ 1, . . . , nA þ nBÞi is the product of the unperturbed
monomer Hartree–Fock wave functions, and the effective Hamiltonian J is defined
as [6]

J ¼ expð��ÞH expð�Þ, ð6Þ

where � is the orbital rotation operator resulting from the intermolecular perturba-
tion. It is obtained from the condition

@ECoul,HF

@�
¼ 0 ð7Þ

which leads to the response equation for �ð1Þ at first order in V:

h0j½X , ½�ð1Þ,Hð0Þ��j0i þ h0j½X ,V �j0i ¼ 0, ð8Þ

where X is a general single (de-)excitation operator. The occupied–occupied and
virtual–virtual blocks of � are zero, and in the Coulomb approximation, � is a sum of
operators �A and �B restricted to the monomer subspaces of A and B, respectively.

The effective Hamiltonian in equation (6) is expanded in powers of the
perturbation V [6], and the Coulomb interaction energy in the Hartree–Fock
approximation is then obtained by substituting this expansion into equation (5).
The zero-order Coulomb energy, E

ð0Þ
Coul,HF, is the sum of the Hartree–Fock monomer

Intermolecular potentials 155
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energies, EA, HF and EB, HF, so the Hartree–Fock Coulomb interaction energy is the
sum of all higher-order terms.

The first-order Hartree–Fock Coulomb interaction energy is

�E
ð1Þ
Coul,HF ¼ h0jV j0i: ð9Þ

This is the electrostatic interaction between the unperturbed Hartree–Fock charge
densities of the molecules, �A, HF and �B, HF. It is most important for ions and
hydrogen-bonding interactions, but it cannot be neglected for any molecular dimer.

At second order,

�E
ð2Þ
Coul,HF ¼

1

2
h0j½�ð1Þ,V �j0i: ð10Þ

This is the induction energy produced by the coupled Hartree–Fock response of A
to the Hartree–Fock density of B and vice versa. There is no dispersion energy at
the Hartree–Fock supermolecule level. The induction energy is important for
interactions involving at least one ion or polar molecule.

At third order,

�E
ð3Þ
Coul,HF ¼

1

6
h0j½�ð1Þ, ½�ð1Þ, ½�ð1Þ,Hð0Þ���j0i þ

1

2
h0j½�ð1Þ, ½�ð1Þ,V ��j0i: ð11Þ

This corresponds to hyperpolarization of A by B, and vice versa, and to the
electrostatic interaction between polarized densities of A and B.

Using the same notation as in equation (5), the MP2 Coulomb energy is
written as

ECoul,MP2 ¼ h0jJj0i þ htjJj0i, ð12Þ

where jti is a linear combination of doubly excited determinants,

jti ¼
X
�

t�j�i, ð13Þ

with the restriction that all excitations of individual electrons are restricted to
monomer subspaces. The amplitudes satisfy the equation

h0jJj�i ¼ �
X
�

t�h�jF
ifJg � ECoul,HFj�i, ð14Þ

where FifJg is the inactive Fock operator [7] of operator J. The general expression
for the MP2 Coulomb energy Lagrangian is therefore [6, 8]

ECoul,MP2 ¼ h0jJj0i þ 2htjJj0i þ htjFifJg � ECoul,HFjti þ h0j½	, J�j0i, ð15Þ

where the last term is required to fulfil the Brillouin condition. The operator 	 is a
sum of single (de-)excitations with amplitudes defined by Lagrange multipliers, and
it is a sum of separate operators 	A, 	B for each molecule.

Computationally efficient expressions for the MP2 Coulomb energy can then be
obtained by treating equation (15) as variational in all its parameters. The response
equation (8) for �ð1Þ is obtained by making the Lagrangian stationary with respect to
	. Making the Lagrangian stationary with respect to t� gives equation (14), from
which expressions are obtained for the zero-order amplitudesX

�

tð0Þ� h�jFifHð0Þg � E
ð0Þ
Coul,HFj�i ¼ �h0jHð0Þj�i ð16Þ

R. J. Wheatley et al.156
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and the first-order amplitudesX
�

tð1Þ� h�jFifHð0Þg � E
ð0Þ
Coul,HFj�i ¼ �h0jJð1Þj�i � h�jFifJ ð1Þg ��E

ð1Þ
Coul,HFjt

ð0Þi: ð17Þ

Expressions for the zero-order and first-order Lagrange multipliers 	 are obtained in
a similar way, by making the Lagrangian stationary with respect to �.

The MP2 Coulomb interaction energies at different orders of the intermolecular
interaction are then obtained by expanding the Lagrangian in powers of V. At first
order,

�E
ð1Þ
Coul,MP2 ¼ �E

ð1Þ
Coul,HF þ htð0ÞjFifJ ð1Þg ��E

ð1Þ
Coul,HFjt

ð0Þi þ h0j½	ð0Þ, J ð1Þ�j0i: ð18Þ

If the MP2 charge density is separated into the Hartree–Fock density and the MP2
correction,

�A,MP2 ¼ �A,HF þ ��A,MP2 ð19Þ

the first-order MP2 Coulomb energy includes the interaction of �A, HF with ��B,MP2

and ��A,MP2 with �B, HF, but does not include the interaction of the MP2 corrections
with each other.

At second order,

�E
ð2Þ
Coul,MP2 ¼ �E

ð2Þ
Coul,HF þ 2htð0ÞjJ ð2Þj0i þ htð1ÞjJ ð1Þj0i

þ htð1ÞjFifJ ð1Þg ��E
ð1Þ
Coul,HFjt

ð0Þi

þ htð0ÞjFifJ ð2Þg ��E
ð2Þ
Coul,HFjt

ð0Þi

þ h0j½	ð0Þ, J ð2Þ�j0i: ð20Þ

This expression includes an induction energy component, which can be expressed
in terms of the molecular charge densities � and the molecular ‘susceptibilities’ P [9].
The susceptibility is the response of the density to a change in the external
electrostatic potential. If the MP2 susceptibility of molecule A is separated into
the coupled Hartree–Fock susceptibility PA, HF and the MP2 correction �PA,MP2,
the second-order MP2 Coulomb interaction energy includes contributions from
PA, HF�B, HF��B,MP2 and �PA,MP2�B, HF�B, HF, but has no terms involving more than
one MP2 correction.

The second-order MP2 energy also includes a dispersion energy component,
which is the contribution to htð1ÞjJð1Þj0i in equation (20) from single excitations on A
and B. This term is classified as dispersion, rather than induction, because it has
a long-range component even for spherical interacting atoms. That is, it does not
depend on � or FifVg.

At third order,

�E
ð3Þ
Coul,MP2 ¼ �E

ð3Þ
Coul,HF þ 2htð0ÞjJ ð3Þj0i þ 2htð1ÞjJ ð2Þj0i

þ 2htð0ÞjFifJ ð2Þg ��E
ð2Þ
Coul,HFjt

ð1Þi

þ htð0ÞjFifJ ð3Þg ��E
ð3Þ
Coul,HFjt

ð0Þi

þ htð1ÞjFifJ ð1Þg ��E
ð1Þ
Coul,HFjt

ð1Þi

þ h0j½	ð0Þ, J ð3Þ�j0i þ h0j½	ð1Þ, J ð2Þ�j0i: ð21Þ

Intermolecular potentials 157



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f N
ot

tin
gh

am
] A

t: 
12

:0
0 

1 
A

ug
us

t 2
00

8 

There is no dispersion energy contribution to the MP2 supermolecule energy at third
order in V, because all the terms in this equation involve � or FifVg explicitly or
implicitly. Induction and ‘mixed’ induction/dispersion terms can be identified, but
they will not be considered separately in this review.

2.2. Direct calculation of intermolecular potentials using perturbation theory
Methods based on perturbation theory do not usually correspond exactly to the

perturbation expansion of supermolecule energies discussed in section 2.1. Instead,
perturbation theory is applied to the wave function of the dimer, giving formally
exact expressions for the intermolecular potential to different orders of the inter-
action operator V. In order to make the calculations tractable, the first-order,
second-order and higher-order energies are evaluated by making approximations
to the wave functions appearing in the perturbation expressions. Depending on the
nature of these approximations, the interaction energy at each order of V may
contain different terms than expanded supermolecule energies.

The most highly developed and widely used perturbation theory for intermo-
lecular potentials is symmetry-adapted perturbation theory (SAPT) [10]. This is
based on the symmetrized Rayleigh–Schrödinger (SRS) perturbation theory [11],
which differs from the Coulomb perturbation theory described in section 2.1 in that
SAPT calculates the energies at different orders in the perturbation using anti-
symmetrized Coulomb wave functions [12]. (Note that ‘Coulomb’ in this review
means the same as ‘polarization’ in the SAPT papers.) Antisymmetrizing the wave
functions enables the exchange-repulsion interaction energy to be obtained from
SAPT. The first-order SAPT interaction energy includes the first-order Coulomb
energy, together with a first-order exchange-repulsion energy which is obtained by
antisymmetrizing the zero-order dimer Coulomb wave function over all electron
coordinates. The second-order interaction energy includes induction and dispersion,
and also exchange-induction and exchange-dispersion interaction energies [13, 14].

The convergence of the perturbation expansion of the Coulomb interaction
energy, and of the SAPT/SRS perturbation theory, has been investigated for several
Van der Waals dimers [15, 16]. The main problem with the Coulomb perturbation
theory is that the formal definition of the Coulomb interaction energy, equation (2),
cannot be used at short range for some interactions, because even at the Hartree–
Fock level the Coulomb wave function is unphysical. The electrons of molecule A are
not constrained to be in orbitals orthogonal to the orbitals of B, and since the Pauli
principle does not apply between them, the electrons of A can be unphysically
transferred to the occupied orbitals of B, and vice versa. This produces a Pauli-
forbidden state with lower energy than the Pauli-allowed states. For example, in a
complex between a two-electron molecule A with one occupied molecular orbital A1,
and a four-electron molecule B with two occupied molecular orbitals B1 and B2, the
‘physical’ Pauli-allowed Coulomb wave function is jA1�A1�j � jB1�B1�B2�B2�j, and
the ‘unphysical’ Pauli-forbidden states include jA1�A1�j � jB1�B1�A1�A1�j, where the
electrons in the first determinant, which belong to A, are distinguished from the
electrons in the second determinant, which belong to B. This state could be reached
in a Coulomb energy calculation, if the basis set of B were large enough to describe
the molecular orbitals of A.

This unphysical behaviour can occur around the Van der Waals equilibrium
separation for interactions between molecules involving first-row and second-row
atoms which are described using very large basis sets. Equation (2) is not useful

R. J. Wheatley et al.158
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under these circumstances, and Coulomb perturbation theory cannot be used to high
order, because the energy either diverges or converges to the Pauli-forbidden value.
In the SRS perturbation theory the wave functions are calculated within the
Coulomb approximation, so they also either diverge or converge to a Pauli-
forbidden state, which affects the convergence of the energies calculated from them
[17]. The use of either Coulomb or SRS perturbation theory therefore relies on rapid
convergence to a physical state, so that the perturbation series can be truncated at
second or third order in the energy, and slow approach to the unphysical state (that
is, weak coupling between the physical and unphysical states), so that the second-
order and third-order energies, which are retained in the perturbation expansion, are
not significantly affected by mixing with the unphysical states. This is certainly true
for Van der Waals interactions of small atoms at reasonably large separations [16],
but more work on the behaviour of the perturbation series for larger systems is
required.

To second order in V, the SAPT expansion of the intermolecular poten-
tial includes four Hartree–Fock terms: E

ð10Þ
pol , E

ð10Þ
exch, E

ð20Þ
ind and E

ð20Þ
exch-ind. The E

ð10Þ
pol and

E
ð20Þ
ind terms are identical to �E

ð1Þ
Coul,HF and �E

ð2Þ
Coul,HF from equations (9) and (10).

The sum of all four Hartree–Fock terms gives a second-order perturbation
expansion of the Hartree–Fock supermolecule interaction energy. The difference
between the perturbation expansion and the supermolecule energy is a measure of
the importance of higher-order Hartree–Fock energy contributions, and it has been
calculated to be between 3 and 17% of the Hartree–Fock interaction energy for
several molecular dimers [18]. This is a significant difference, and potential energy
surfaces derived from SAPT usually incorporate higher-order Hartree–Fock energy
contributions by replacing these four terms by the Hartree–Fock supermolecule
interaction energy.

In addition, SAPT gives energy contributions arising from intramolecular and
intermolecular electron correlation, of which the lowest-order and most frequently
used terms are E

ð1, 2�l�3Þ
pol , E

ð1, 1�l�2Þ
exch , E

ð2, 0�l�2Þ
disp and E

ð2, 0Þ
exch-disp. The E

ð1, 2Þ
pol term is the

same as the MP2 supermolecule correction to the first-order Coulomb energy in
equation (18), and E

ð2, 0Þ
disp is the dispersion energy contribution to �E

ð2Þ
Coul,MP2 in

equation (20). The other Epol and Edisp terms correspond to higher levels of electron
correlation than supermolecule MP2. For Van der Waals interactions, it is par-
ticularly important to correct the MP2 dispersion energy using the E

ð2, 1Þ
disp and E

ð2, 2Þ
disp

terms. A more complete discussion of the perturbation expansion of the MP2
supermolecule energy was given by Cybulski et al. [19], who also reported the basis
set dependence of the different contributions.

The intermolecular perturbation theory (IMPT) of Hayes and Stone [20] also
gives first-order exchange-repulsion and Coulomb interaction energies, and second-
order induction, dispersion and exchange-dispersion energies. The sum of the first-
order exchange-repulsion and Coulomb interaction energies is the Heitler–London
interaction energy,

�EHL ¼
h 0jHj 0i

h 0j 0i
� EA, HF � EB, HF ¼ �E

ð1Þ
Coul,HF þ�E

ð1Þ
exch,HF ð22Þ

where j 0i is obtained by antisymmetrizing the zero-order Hartree–Fock Coulomb
wave function j0i over all electronic coordinates, and the first-order Coulomb
interaction energy is defined by equation (9). IMPT differs from SAPT in having
a separate charge transfer interaction energy. Charge transfer occurs because the
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orbitals of A and B are treated differently in IMPT, and it corresponds to the transfer
of one or more electrons from orbitals of A to B, or vice versa. The charge transfer
energy is difficult to define uniquely, and estimates of its importance for hydrogen
bonds range from 18% [21] to 4% [22]; most definitions are very sensitive to the basis
set. When IMPT was used to produce a potential energy surface for the water dimer
[23], the charge transfer was originally not included, as it was believed to be
dominated by basis set superposition error. More recent IMPT potential energy
surfaces for the water dimer [24], and for the hydrogen fluoride dimer [25], have
included charge transfer contributions.

Perturbation theory and supermolecule calculations can therefore be compared
to fixed orders in V, but they have the fundamental difference that the supermolecule
calculations include terms to infinite order in V. The higher-order terms may be
important, especially at short intermolecular separations where the interaction is
strong. It is therefore useful to consider whether methods can be devised where high-
order terms in V are obtained from supermolecule calculations, and low-order terms
in V are obtained from perturbation theory. This is the main subject of the next
section.

3. The use of monomer calculations

Perturbation theory gives expressions for some components of the intermolecular
potential in terms of properties of the separated monomer molecules. The use of
monomer calculations to obtain components of the intermolecular potential, where
possible, is greatly preferable to supermolecule calculations. Monomers are smaller
than dimers, and often have higher spatial symmetry; calculations on monomers
are free of basis set superposition error, and do not need to be repeated at every
intermolecular geometry for which the intermolecular potential is required. Approx-
imate techniques, such as linear-scaling ab initio methods, can be used to improve
the speed of monomer calculations, but they may introduce larger errors in
supermolecule calculations [26], and in general the same level of ab initio theory
gives better results in monomer calculations than in dimer calculations. For example,
Hartree–Fock and density functional methods give reasonable dispersion energy
coefficients when they are used in monomer calculations, but give no long-range
dispersion energy in supermolecule calculations. Methods for calculating inter-
molecular potentials based mostly or entirely on monomer properties are reviewed
in section 3.1, followed by more recent developments in using monomer properties to
improve supermolecule calculations.

3.1. Estimating intermolecular potentials from monomer properties
Different components of the Coulomb interaction energy can be expressed

exactly in terms of properties of the interacting molecules, and intermolecular
Coulomb integrals. The first-order Coulomb energy can be written in terms of the
charge densities (in atomic units) as

�E
ð1Þ
Coul ¼

ZZ
�Að1Þ�Bð2Þr

�1
12 dr1 dr2, ð23Þ

or it can be expanded in a basis set,

�E
ð1Þ
Coul ¼ �A, pq�B, rsðpqjrsÞ ð24Þ
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plus nuclear density contributions, where p, q, r and s are (atomic or molecular)
orbitals, �A and �B are density matrices, (pqjrsÞ is a two-electron integral, and the
summation convention is used.

The second-order induction energy is

�E
ð2Þ
ind ¼ �

1

2
�A, pq�A, rsPB, tuvwð pqjtuÞðrsjvwÞ þ A $ B, ð25Þ

plus nuclear density contributions, where PB is a polarization propagator [27, 28],
which is essentially a basis set expansion of the susceptibility introduced in
section 2.1. Similarly, the second-order dispersion energy can be written as an
integral over imaginary frequency, using frequency-dependent polarization propa-
gators of the monomers.

The two main problems with this approach are the computational cost of
calculating and storing the densities and particularly the propagators, and the
absence of similar relationships for the exchange-repulsion energy.

The dependence of the energy on the density and propagator matrices can
be removed by using a multipole expansion, which expresses the intermolecular
potential as a power series in R�1, that is,

�Emult ¼ �
X1
n¼1

CnR
�n, ð26Þ

where R is some intermolecular separation, and Cn is a multipole coefficient which
depends only on the molecular orientations, and not on the separation R. The
multipolar interaction energy between two molecules can be formally defined by

�Emult ¼ Emult � EA � EB, ð27Þ

where Emult is obtained by performing a supermolecule calculation, replacing all
intermolecular electron repulsion and nuclear attraction integrals by their multipolar
equivalents. The integrals neglected in the Coulomb interaction energy are also
neglected in the multipolar interaction energy, so both calculations are free of basis
set superposition error, exchange-repulsion is absent from �Emult, and the monomer
energies in equation (27) should be calculated in the monomer-centred basis sets.

Equation (27) is not useful by itself because �Emult diverges as the basis set
is enlarged, but in combination with a perturbation expansion, it can be used to give
simplified expressions for the different components of the Coulomb interaction
energy.

The multipolar first-order Coulomb interaction energy has been widely studied.
Using the multipole expansion, the summation over orbital indices in equation (24)
reduces to a (usually) much smaller sum over angular momentum indices lA, lB, mA

and mB; the density matrices reduce to multipoles QA, lm and QB, lm, and the two-
electron integrals reduce to multipole integrals with a well-known dependence [29, 30]
on the angular momentum indices and on the intermolecular geometry. For a
Gaussian basis set, it is easy to show that the multipolar first-order Coulomb
interaction energy can be approximated to any desired accuracy as a sum of
interactions between atom-centred multipoles. The multipolar Coulomb interaction
energy then takes the form of a sum of interatomic terms:

�Emult ¼ �
X
a, b

X1
n¼1

Cn, abR
�n
ab , ð28Þ
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where a and b are atoms of A and B, respectively, and Rab is their internuclear

distance. This atomic multipole expansion [31] converges when the intermolecular
separation is larger than the intramolecular bond lengths, which is usually the case.

The multipolar first-order interaction energy can also be expressed as an

interaction between molecule-centred multipoles, giving a very simple multipole
expansion for the energy in the form of equation (26). However, this expansion only
converges when the intermolecular distance is more than the sum of the radii of the

interacting molecules, so it is useful only for very small molecules. Of course, the
multipolar first-order interaction energy does not equal the ‘non-expanded’ first-
order Coulomb interaction energy obtained from equation (24). The first-order

Coulomb energy contains a non-multipolar component, called the penetration
energy, which falls off approximately exponentially with separation. For typical
Van der Waals complexes, the penetration energy is negative, and it cannot be

neglected in calculating the intermolecular potential. For example, it provides about
40% of the binding energy of both the Van der Waals dimer Ar2 [32] and the

hydrogen-bonded dimer (H2O)2 [33].
The multipolar second-order interaction energy diverges at all intermolecular

geometries for a complete basis set. This is illustrated in figure 1 for the helium

dimer; note the behaviour of the upper dashed line compared to the upper solid line.
The figure also shows the difficulty of calculating second-order Coulomb energies,
whether using the multipole approximation or not. The lower solid and dashed lines

show results obtained using the standard augmented correlation-consistent basis
sets [34] which are widely used in quantum chemistry. The convergence to the basis
set limit is very slow, and even for the aug-cc-pV6Z basis set the basis set

incompleteness error is probably more than 10%. Calculations on larger molecules
are not feasible using such large basis sets. Instead, it has been shown [35] that it is

Figure 1. The second-order dispersion energy for the He2 dimer, at a separation of
R ¼ 5:5 a0, calculated at supermolecule MP2 (monomer uncoupled Hartree–Fock)
level. Dashed lines labelled ‘Mult’ use the multipole approximation, solid lines
labelled ‘Disp’ do not. The lower solid and dashed lines labelled ‘AV’ are obtained
using aug-cc-pVnZ basis sets, and the upper solid and dashed lines labelled ‘SP’ using
the SP-aug-cc-pVnZ basis sets defined in the text.

R. J. Wheatley et al.162
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possible to modify the aug-cc-pVnZ basis sets to improve the description of the
dispersion energy without resorting to dimer-centred or midbond basis functions.
For hydrogen and helium, the exponents of the nl Gaussian basis functions for
angular momenta l � 2 (d and higher functions) are changed to the nl lowest
exponents for angular momentum l¼ 1 (p functions). For first-row and second-
row atoms, Gaussian exponents with l � 3 are changed to the lowest d-function
exponents. This simple modification makes the Gaussians with higher angular
momentum more diffuse, and gives a better (although presumably still not
optimal) basis set for calculating the dispersion energy. The new basis sets are called
SP-aug-cc-pVnZ (SP for Shifted Polarization exponents). The upper solid line in
figure 1 shows that the convergence to the basis set limit of the dispersion energy
calculated with the SP basis sets is faster than with the standard basis sets, and in
practice the saving in computer time achieved with the SP basis sets, for the same
accuracy, is usually about a factor of 10.

Although the multipolar second-order energy always diverges in the complete
basis set limit, for reasonably well-separated small molecules the multipole expan-
sion follows the pattern of an asymptotically divergent series, and useful results can
be obtained by summing the first few powers of R�1. Using the multipole expansion,
the summation over orbital indices in equation (25) again reduces to a sum over
angular momentum indices, the density matrices reduce to multipoles, the two-
electron integrals reduce to multipole integrals, and the polarization propagator
reduces to a polarizability �B, lm, l0m0 . The multipolar dispersion energy can similarly
be calculated using frequency-dependent polarizabilities. In the multipolar disper-
sion energy, the coefficients Cn in equation (26) are called dispersion energy
coefficients, and the minimum value of n is 6.

For small molecules, it is reasonable to calculate the multipolar second-order
induction and dispersion energies using multipoles and polarizabilities located at the
centres of the molecules, giving a single expression of the form of equation (26). For
larger molecules, it is clearly necessary (as for the multipolar first-order energy) to
use atom-centred multipoles and polarizabilities. Obtaining atom-centred polariza-
bilities has proved to be a difficult task [9], although there has been some promising
progress in this area [36–40].

Given that the multipolar second-order energy diverges, it is not meaningful to
define a second-order analogue of the penetration energy as the difference between
the multipolar energy and the non-expanded energy. Instead, several ‘damping’
schemes have been considered (see below), in which each term �CnR

�n of the
divergent multipole series is multiplied by a damping function fn(R) to make the
series converge, ideally to the correct non-expanded energy. Damping functions have
been published for several small atoms and ions [41–45], but accurate calculations
are very time-consuming for larger systems.

The Coulomb energy at higher orders of V can be expanded as a multipole series
in the same way as the second-order Coulomb energy. However, higher-order
contributions are rarely considered explicitly. They suffer from the same divergence
problems as the second-order energy, it is much more time-consuming to calculate
even the leading multipole coefficients, less is known about the damping of higher-
order interaction energies, and the contribution of higher-order terms to the inter-
molecular potential is usually relatively small.

Intermolecular potential energy surfaces based entirely on monomer calcula-
tions therefore usually include the first-order Coulomb interaction energy, the

Intermolecular potentials 163
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second-order multipolar dispersion (and induction) energy, damping of the disper-
sion (and induction) multipole series, and the exchange-repulsion interaction energy.
The exchange-repulsion cannot be defined rigorously in terms of monomer proper-
ties, but several empirical models based on monomer properties have been devised.
The simplest is the overlap model [46–48], which assumes that the exchange-
repulsion interaction energy is proportional to the electron density overlap integral:

�Eexch ¼ KS�, ð29Þ

where K is a parameter, and the electron density overlap integral S� is defined by

S� ¼

Z
�eAðrÞ�

e
BðrÞ dr, ð30Þ

where �eA is the unperturbed electron density of monomer A. The quantities ðS�Þ
x

[49, 50] and ðS�=R
2Þ

x [51] have also been used in equation (29) instead of S�, where
x is a parameter and R is the intermolecular separation.

A linear relationship between the exchange-repulsion interaction energy and the
first-order penetration energy has also been proposed [52, 53],

�Eexch ¼ ��ð1þ aRÞð�E
ð1Þ
Coul ��E

ð1Þ
multÞ, ð31Þ

and calculating the exchange-repulsion energy from this equation also requires only
monomer charge densities and the parameters � and a. The parameter a is usually
taken to be 0.1 atomic units. Long-range multipolar 1/R terms are not present in
the exchange-repulsion energy or the penetration energy. However, short-range 1/R
terms are present in the penetration energy, and for equation (31) to be applied to
non-spherical molecules, these 1/R terms should be removed, which is difficult to do
properly [54].

The parameters in equations (29) and (31) are often fitted to make the complete
potential energy surface reproduce experimental or supermolecule data. This fitting
procedure corrects for deficiencies elsewhere in the potentials, so the fitted exchange-
repulsion is not necessarily an individually meaningful term in the total intermo-
lecular potential. Methods for estimating the exchange-repulsion interaction energy
with no empirical parameters have also been devised, including the surface integral
model [55–57] and the spherical Gaussian overlap model [58–61]. The lack of
parameters makes these methods preferable in principle to using equations (29) or
(31), but in practice they currently seem to be too approximate to be capable of
generating accurate intermolecular potential energy surfaces.

The monomer-based models for the exchange-repulsion interaction energy
defined by equations (29) and (31) have been incorporated into methods for
calculating complete intermolecular potentials, based entirely on monomer proper-
ties. The XC model, devised by Meath and co-workers, is based on equation (31) for
the exchange-repulsion energy, and a damped multipole series for the dispersion
energy [52, 53]. It is, in principle, completely based on monomer properties, namely
charge densities and dispersion energy coefficients. Dispersion energy coefficients up
to C10 are used, and the multipolar dispersion energy is damped as follows:

�Edisp ¼ �GðRÞ
X
n

Cn fnðRÞR
�n: ð32Þ

The ‘individual damping functions’ fn, and the ‘overall corrector function’ G, are
both based on near-exact calculations [41, 52] on the model Van der Waals dimer H2
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in its 3�þ
u electronic state. The damping functions fn correct each individual

multipolar term CnR
�n to the corresponding non-expanded term obtained from

basis functions with angular momentum LA on atom A and angular momentum LB

on atom B, where n ¼ 2LA þ 2LB þ 2. The corrector function G accounts for the
neglect of coefficients above n¼ 10, and for the spherical dispersion energy, which
is obtained from states with LA¼ 0 or LB¼ 0 and has no multipole expansion. For
other Van der Waals molecules, the damping functions and corrector function are
assumed to differ only by a linear scaling of the length coordinate. Therefore, for a
general dimer AB, damping functions are obtained using

fnðR;ABÞ ¼ fnððXHHR=XABÞ; HHÞ ð33Þ

and similarly for G, where XAB is some property of AB which increases with the
‘sizes’ of the interacting molecules. Different properties have been used in this
context (see [42]); one simple property based on the dispersion energy coefficients is

XAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C8ðABÞ=C6ðABÞ

p
: ð34Þ

Using this property requires no additional data, since the C6 and C8 dispersion
energy coefficients are already used in the XC model.

The XC model was originally used for calculating spherically symmetrical
intermolecular potentials [62], but more recently the Heitler–London first-order
interaction energy, given by equation (22), has been used in the XC model instead of
the penetration energy, and potential energy surfaces have been calculated for Ar-N2

[63], Kr-N2 [64], Ar-H2 [65] and Ne-N2 [66].
The systematic potential method (SPM) is related to the XC method, but the

exchange-repulsion energy is obtained from the overlap model, equation (29), rather
than from the first-order Coulomb energy, equation (31). The use of the overlap
model has the advantage that the charge density overlap is free from short-range
1/R terms, so equation (29) can be used without modification for any interacting
molecules. Intermolecular potentials for Liþ-H2O [67], Naþ-H2O [33] and the water
dimer [33] have been calculated using this method, with separate damped multipole
series for the dispersion and induction energies.

The XC and SPM methods are often more accurate and faster to use than MP2
supermolecule calculations, but they are not as accurate or reliable as CCSD(T)
supermolecule calculations. For example, they lack explicit exchange-induction
terms, and the assumption that damping functions can be scaled from the triplet-
H2 intermolecular potential is sometimes not valid [42]. Since parameters in the
exchange-repulsion energy need to be fitted to experimental data, XC and SPM are
not true ab initio methods. To improve their accuracy, the monomer properties used
to construct the XC and SPM potentials can be combined with supermolecule
calculations, as described in the next section.

3.2. Improving supermolecule calculations using monomer properties
When the Coulomb and exchange-repulsion contributions to the supermolecule

interaction energy are considered separately, both can be shown to depend strongly
on the level of theory used to calculate them. Deficiencies in the low-level Coulomb
interaction energy can be demonstrated using perturbation theory, as will be
described in this section. In addition, calculations have shown that the exchange-
repulsion interaction energy differs by up to 30% between Hartree–Fock and
correlated calculations [68–70]. Given that some of their deficiencies are known,
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it is important to investigate whether it is possible to improve the results of low-level
supermolecule calculations, without resorting to higher-level supermolecule calcula-
tions which may not be affordable.

3.2.1. Methods based on Hartree–Fock and density functional theories
The most obvious deficiency of low-level supermolecule calculations is the lack

of a dispersion interaction energy in Hartree–Fock theory. This can be remedied
by calculating the dispersion energy separately, and adding it to the Hartree–Fock
interaction energy. A popular method for doing this is the Hartree–Fock plus
damped dispersion (HFD) method.

In the HFD method, the dispersion energy is calculated using a damped
multipole series of the form of equation (32). The individual damping functions
fn(R) are defined in the same way as in the XC model, although a different functional
form is used to represent them. However, the HFD corrector function G(R) is
intended [71] to account for the exchange-dispersion, which is missing from the
Hartree–Fock supermolecule calculation, so it is different from the XC corrector
function. The property XAB used to scale the length coordinate of the damping
functions in equation (33) is based on the ionization energies of the monomers. The
HFD method was first used to calculate potential energy surfaces for rare gas atoms
and hydrogen [72]. Related methods have more recently been described with Heitler–
London instead of Hartree–Fock calculations, and used to calculate intermolecular
potentials for a number of interactions including the nitrogen [73] and carbon
monoxide [74] dimers.

Like the HFD model, the Tang–Toennies (TT) model was originally based on
Hartree–Fock supermolecule calculations and a damped multipole series for the
dispersion energy. More dispersion energy coefficients are included in the TT model
than in the HFD or XC models, by estimating the higher dispersion energy
coefficients from the lower ones based on a reasonable empirical relationship. The
TT dispersion damping does not, therefore, need to take account of missing higher
terms in the multipole series. No corrector function G(R) is present in the TT model.
The TT damping functions fn(R) used to damp the Cn multipolar term are
incomplete gamma functions of order nþ 1 [68]:

fnðRÞ ¼ 1�
Xn
k¼0

ðbRÞk

k!
e�bR, ð35Þ

where b is a constant. These behave differently, as a function of n, from the XC
individual damping functions. It is reasonable for the two to be different, because
a correction for the spherical dispersion must be included in the TT individual
damping functions, but not in the XC individual damping functions. However, the
TT damping functions are more empirical, because the XC and HFD damping
functions are based on exact calculations, whereas the TT damping functions
are simply physically reasonable functions of R. Unlike the HFD model, the
exchange-dispersion energy is not included in the TT model through the damped
multipole series. (In this context, it is ironic that the TT damping functions
appear to represent the dispersion plus exchange-dispersion energy of Ar2 better
than the dispersion energy alone [75].) Instead, the exchange-repulsion energy
contributions missing from the Hartree–Fock supermolecule calculation, including
the exchange-dispersion energy, are included in the TT model by scaling the
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Hartree–Fock interaction energy by a constant factor, originally obtained from
experiment [68]. The Hartree–Fock interaction energy was scaled by between 1.14
and 1.17 for rare gases interacting with nitrogen [76]. The Heitler–London inter-
action energy has also been used in the TT model instead of the Hartree–Fock
interaction energy. The Heitler–London interaction energy was scaled by 1.31 to
obtain potential energy surfaces in agreement with experiment for rare gases
interacting with halide and alkali ions [77].

The main computational cost of the HFD and TT methods is the Hartree–Fock
supermolecule calculations. They are therefore computationally efficient methods,
and the computer time needed to use them scales with system size as N4S, where N is
the size of the basis set and S is the number of points on the potential energy surface.
The XC model scales in the same way. However, their accuracy is not competitive
with more modern methods unless empirical parameters are used and fitted
to experimental data (see for example [65]). In particular, the use of Hartree–
Fock supermolecule calculations for the first-order Coulomb, induction and
exchange-repulsion energies causes significant errors. In hydrogen-bonded dimers,
the Hartree–Fock method overestimates the monomer dipoles by about 10%, and
hence the first-order Coulomb and induction energies may be overestimated by as
much as 20%.

Density functional calculations have recently been used instead of Hartree–Fock
supermolecule calculations in methods based on the HFD model [78–80]. If a
suitable density functional is chosen, then the properties of the monomers can be
more accurate than at Hartree–Fock level, and this method therefore has conceptual
advantages over the HFD and TT models, and the scaling of computational effort
with system size is the same. However, one disadvantage is that although density
functional theory gives no long-range dispersion interaction energy, it does give
some intermolecular correlation, and hence a short-range dispersion interaction,
when the charge densities overlap. It is therefore not correct to add to the DFT
interaction energy the same damped dispersion series that is used in the HFD
method, because this would count some of the short-range dispersion energy twice
[78]. Furthermore, the exchange-repulsion interaction energy may be less reliable in
density functional calculations than in Hartree–Fock calculations, as the exchange
functional used in DFT is not usually exact.

3.2.2. The SIMPER and SPT methods
Instead of starting from the low level of a Hartree–Fock supermolecule

calculation, it is now reasonable, for molecules which are not very large, to use
the correlated MP2 supermolecule method to generate a potential energy surface.
The computer time used by MP2 supermolecule calculations scales as nN4S, where
n is the number of electrons. MP2 supermolecule calculations give a non-zero
dispersion interaction energy, and predict some binding for all Van der Waals
complexes; they are therefore a significant improvement on Hartree–Fock super-
molecule calculations. However, the first-order Coulomb energy and induction
energy in MP2 supermolecule calculations correspond to using equations (24)
and (25) with a mixture of relatively low-level MP2 and coupled Hartree–Fock
monomer properties, as discussed in section 2.1. The dispersion energy in MP2
supermolecule calculations corresponds to using uncoupled Hartree–Fock monomer
polarization propagators, which is an even lower level of theory than the coupled
Hartree–Fock polarization propagators in the induction energy. This generally
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means that MP2 supermolecule calculations underestimate the strength of weak Van
der Waals bonds, often by 30–50% (see also [81]). The systematic intermolecular
potential extrapolation routine (SIMPER) has been developed with the aim of
replacing parts of the supermolecule MP2 intermolecular potential by more high-
level calculations using monomer properties, in a way which involves no significant
extra computational expense.

The MP2 intermolecular potential �EMP2 is partitioned as

�EMP2 ¼ �E
ð1Þ
Coul,MP2 þ�E

ð2Þ
disp,MP2 þ�E

ð2Þ
ind,MP2 þ�E

ðn>2Þ
Coul,MP2 þ�Eexch,MP2, ð36Þ

where the first-order Coulomb energy is defined by equation (18), and the dispersion
and induction interaction energies are defined by separating equation (20) into two
parts as explained in the text following that equation. The last two terms in
equation (36) are more difficult to separate; they will be discussed later.

A high-level first-order Coulomb interaction energy is then calculated from
equation (24). The only properties required are high-level density matrices, and
the computer time required to apply equation (24) scales as N4S, independent of the
level of theory used to obtain the densities. Using MP2 densities in equation (24)
is theoretically preferable to using the first-order MP2 supermolecule energy from
equation (18), but the two differ only by the interaction between the MP2 density
corrections, which is usually negligible. Better results have been obtained by using
quadratic CI (QCISD) and coupled-cluster (CCSD) densities [82] in equation (24).
The computer time required to obtain these densities scales as n2N4, which is small
relative to the MP2 supermolecule calculations, since the number of points on the
potential energy surface is usually much larger than the number of electrons. The
MP2 intermolecular potential is therefore modified by replacing the ‘low-level’ MP2
first-order Coulomb energy in equation (36) by the high-level first-order Coulomb
energy from equation (24), calculated using QCISD or CCSD densities. The
difference between these ‘low-level’ and ‘high-level’ first-order Coulomb interaction
energies is usually about 5–10%.

For atoms and non-polar molecules, the induction energy is smaller than the
dispersion energy, and in MP2 supermolecule calculations the dispersion energy is
present at a lower level of (monomer) theory and is expected to have a larger relative
error than the induction energy. Therefore, it is more important to improve the
dispersion energy than the induction energy, and this is reflected by the greater
emphasis on the former in the literature. The most obvious way to improve the
dispersion energy (and the induction energy) is to calculate the monomer polariza-
tion propagators at a higher level of theory. However, for any level higher than
coupled Hartree–Fock, this requires significant computational effort in calculating,
storing and using the propagators. This would probably make the method
uncompetitive with higher-level supermolecule calculations in terms of computer
resources. Coupled Hartree–Fock propagators are better than uncoupled Hartree–
Fock ones, and could be used to improve the MP2 dispersion energy, but since the
level of theory would still be quite low, this method would be of limited use.

Instead of recalculating the propagators at a higher level, and hence improving
the non-expanded second-order energy, high-level polarizabilities can be obtained
with relatively little effort. In the SIMPER method, TD-CISD polarizabilities
are used. (The TD-CISD method has not been published; it is a CISD analogue
of the TD-MP2 method [83].) The computer time used to obtain the TD-CISD
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polarizabilities scales as n2N4. The multipolar dispersion energy coefficients, and

hence the multipole expansion of the second-order energy, are obtained from the

frequency-dependent polarizabilities. The ‘low-level’ MP2 dispersion energy in

equation (36) is then replaced by a damped multipole expansion using the high-

level multipole coefficients. The main difficulty is finding suitable damping functions.

For induction, this is currently an unsolved problem, because the electric field

experienced by molecule A is a balance between opposing nuclear and electronic

contributions from molecule B, and this can exceed the multipolar value, giving

individual damping functions greater than 1 [43]. Indeed, the non-expanded

induction energy can be non-zero even when the multipolar induction energy is

zero. The dispersion energy is simpler, because it involves only electron repulsion, so

there is no cancellation of opposing effects, and the individual damping functions

are always found to have values between 0 and 1 (although this is an empirical

observation confirmed by the known data, rather than a proven fact).

Damping functions for dispersion can be estimated if no information is available

other than the dispersion energy coefficients, using equations (33) and (34). These

equations are based on scaling the damping functions of triplet-H2, which may not

always give reliable results [42]. In the SIMPER method, the MP2 supermolecule

dispersion energy is known, so this can be used instead of triplet-H2 as the starting

point of the scaling procedure. The ‘low-level’ MP2 supermolecule dispersion energy

is written as

�E
ð2Þ
disp,MP2 ¼ �

X
n

Cn, low fn, lowðRÞR
�n, ð37Þ

and the dispersion energy coefficients Cn, low corresponding to the multipolar

MP2 supermolecule dispersion energy are obtained from uncoupled Hartree–Fock

polarizabilities. Damping functions for the MP2 dispersion energy are assumed to

have the TT form,

fn, lowðRÞ ¼ 1�
Xn
k¼0

ðblowRÞ
k

k!
e�blowR: ð38Þ

The quantities �E
ð2Þ
disp,MP2 and Cn, low are calculated at each point on the potential

energy surface, and blow is then obtained at each point by substituting equation (38)

into equation (37) and solving the resulting equation, in which blow is the only

unknown quantity. The value of blow is therefore allowed to depend on the

intermolecular geometry. This procedure does not require any fitting, unlike the

method used by Moszynski et al. [84]. In practice, the dispersion energy coefficients

Cn must be calculated up to quite large values of n, at least n¼ 14, otherwise the

truncated multipolar dispersion energy may be less negative than the non-expanded

energy at fairly long range, and blow cannot be found.

Having obtained blow at each point on the potential energy surface, a ‘high-level’

value of b is estimated at each point, using

bhigh ¼ blow
C6, highC8, low

C6, lowC8, high

� �1=2

, ð39Þ
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which is based on equations (33) and (34). The ‘high-level’ damped dispersion energy
is then calculated at each point using

�E
ð2Þ
disp, high ¼ �

X
n

Cn, high fn, highðRÞR
�n, ð40Þ

where Cn, high are the ‘high-level’ TD-CISD dispersion energy coefficients and

fn, highðRÞ ¼ 1�
Xn
k¼0

ðbhighRÞ
k

k!
e�bhighR: ð41Þ

This recalculation of the dispersion energy is usually the most important
modification made to the MP2 supermolecule energy. For example, the dispersion
energy is reduced by about 10% for the argon dimer, and increased by about 25%
for the neon dimer. Since the dispersion energy is larger than the total intermolecular
potential for Van der Waals dimers at the equilibrium separation, the corresponding
percentage changes in the intermolecular potential are even larger: about 20% for
Ar2, and 50% for Ne2.

For weak Van der Waals interactions, these modifications to the first-order
Coulomb interaction energy and the second-order dispersion energy are expected to
be the only significant corrections that need to be made to the Coulomb interaction
energy. The second-order induction energy and higher-order Coulomb interaction
energy terms are smaller at medium and long range, and they are not modified by the
SIMPER procedure; their MP2 values from equation (36) are retained in the total
intermolecular potential.

The exchange-repulsion interaction energy is important at the equilibrium
separation and at short range, and the exchange-repulsion component of the MP2
supermolecule calculation may not be sufficiently accurate. For interactions between
non-polar molecules, the percentage error in the first-order exchange-repulsion
energy is likely to be similar to the percentage error in the first-order Coulomb
energy, since both depend on the electron density overlap. This means that the MP2
exchange-repulsion energy may be in error by up to 10%, and since the exchange-
repulsion energy is similar in size to the total intermolecular potential around the
minimum, this equates to an error of up to 10% in the well depth.

To improve the MP2 exchange-repulsion energy, the overlap model is used. It is
assumed that the proportionality parameter K in equation (29), which relates the
exchange-repulsion interaction energy to the electron density overlap, is independent
of the level of theory. The correction applied to the ‘low-level’ MP2 supermolecule
exchange-repulsion energy is therefore

�Eexch, high ¼ �Eexch, lowS�, high=S�, low: ð42Þ

This assumption has been tested for the helium dimer, for which accurate
calculations of the exchange-repulsion are available. Here, ‘high’ level was full CI
and ‘low’ level was Hartree–Fock. The difference between the Hartree–Fock and
full-CI exchange-repulsion interaction energies is about 10% around the potential
energy minimum, but when the Hartree–Fock exchange-repulsion interaction energy
was scaled by the ratio of the full-CI and Hartree–Fock charge density overlaps,
the agreement improved by about an order of magnitude over a wide range of
separations [35]. The same method improved the accuracy of the exchange-repulsion
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energy of the water dimer by a factor of about 6, at 2500 different points on the
potential energy surface [85].

In the SIMPER method, the ‘low-level’ overlap, S�, low, is defined at the MP2
supermolecule level in a similar way to the MP2 first-order Coulomb energy, by
using equation (30) to calculate the overlap between the Hartree–Fock electron
densities (�eA, HF with �eB,HF) and between the Hartree–Fock densities and the MP2
density corrections (�eA, HF with ��eB,MP2 and �eB, HF with ��eA,MP2), but the overlap
between the two MP2 density corrections is not included. The ‘high-level’ overlap,
S�, high, is the overlap between the QCISD or CCSD electron densities. The computer
time needed to calculate the charge density overlap scales in the same way with
system size as the calculation of the first-order Coulomb energy, so it does not add
significantly to the cost of the calculation. The scaling factor S�, high=S�, low applied
to the exchange-repulsion energy is usually found to be less than 1. It can be as low
as 0.9, so the exchange-repulsion energy can be reduced by up to 10%, and this
increases the total intermolecular potential by up to 10%. However, for the helium
dimer this scaling factor is greater than 1, and in this case the SIMPER method
increases the calculated exchange-repulsion energy.

The main difficulty with using equation (42) to scale the exchange-repulsion
energy is the definition of �Eexch, low, which is �Eexch,MP2 in equation (36). As
discussed in section 2.2, the use of equation (3) to obtain the exchange-repulsion
interaction energy relies on a calculation of the Coulomb interaction energy which
is not stable, and which collapses to an unphysical state for small intermolecular
separations and large basis sets. Therefore, two alternative methods for calculating
the exchange-repulsion energy, SIMPER-P and SIMPER-K, have recently been
investigated.

The SIMPER-P method is based on perturbation theory. The first few terms of a
truncated perturbation expansion of the Coulomb interaction energy are calculated,
and the exchange-repulsion interaction energy is defined by replacing the Coulomb
interaction energy in equation (3) by the truncated perturbation expansion. This is a
straightforward procedure, as the Coulomb perturbation theory is unambiguously
defined, but it would also be interesting to investigate the possibility of using a
perturbation expansion of the exchange-repulsion energy. This method makes the
assumption discussed for SAPT, that the truncated perturbation expansion of the
Coulomb energy recovers most of the ‘physical’ Coulomb interaction energy and a
negligible amount of the ‘unphysical’ Coulomb interaction energy. It is expected that
this is most likely to be true at second or third order in the energy, which is first order
in the wave function.

The SIMPER-P method requires MP2 and high-level charge densities for each
monomer, and MP2 and high-level dispersion energy coefficients for each relative
orientation of the interacting molecules in the dimer. At each point on the potential
energy surface, an MP2 supermolecule calculation is performed, and the MP2
Coulomb interaction energy is calculated to second or third order using equations
(18), (20) and (21). This allows the MP2 exchange-repulsion interaction energy to be
obtained. The MP2 exchange-repulsion interaction energy is then scaled by the ratio
of the high-level to MP2 electron density overlap, and the MP2 first-order Coulomb
interaction energy is replaced by the high-level first-order Coulomb interaction
energy. The MP2 dispersion interaction energy is expressed as a damped multipole
series, the MP2 damping parameter blow is obtained, from which bhigh is calculated
using equation (39), and the MP2 dispersion energy is then replaced by the high-level
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dispersion energy calculated from equation (40), using bhigh and the high-level
dispersion energy coefficients.

The SIMPER-K method is based on using a pseudopotential to prevent the
unphysical charge transfer between molecules. The Coulomb interaction energy is
calculated using the method described after equation (2), but an additional charge-
overlap operator K 0V 0 is added to the dimer Hamiltonian, where K 0 is a positive
constant, and

V 0 ¼
X
iA, iB

�ðriA � riB Þ, ð43Þ

� is a delta-function and iA and iB are electrons of A and B. The expectation value
of the operator V 0 over the zero-order Coulomb wave function is the electron density
overlap S�. In effect, the charge-overlap operator increases the intermolecular
electron repulsion at small intermolecular separations, and therefore increases the
energy of the ‘unphysical’ charge-transfer states, relative to the energy of the
‘physical’ state. This is because the charge-transfer states have a large overlap
between orbitals of A and B, which are spread over both molecules, whereas in
the ‘physical’ state the orbitals of A and B are located on their own molecules.

Even if the SIMPER-K calculation converges to a ‘physical’ state, the calculated
Hartree–Fock Coulomb interaction energy �ECoul,HFðK

0Þ is not correct, because it is
affected by the use of the charge-overlap operator. Perturbation theory is therefore
used to remove the effect of this operator, to second order in the energy. This is
achieved at Hartree–Fock level using

�ECoul,HF ¼ �ECoul,HFðK
0Þ þ�E

ð1Þ
Coul,HFðK

0Þ þ�E
ð2Þ
Coul,HFðK

0Þ, ð44Þ

where the superscripts here denote powers of K 0, not V;

�E
ð1Þ
Coul,HFðK

0Þ ¼ �h0ðK 0ÞjK 0V 0j0ðK 0Þi, ð45Þ

where j0ðK 0Þi is the Coulomb Hartree–Fock wave function, calculated with the
additional K 0V 0 term in the Hamiltonian, and

�E
ð2Þ
Coul,HFðK

0Þ ¼
1

2
h0ðK 0Þj½�ð1ÞðK 0Þ,K 0V 0�j0ðK 0Þi, ð46Þ

where

h0ðK 0Þj½X , ½�ð1ÞðK 0Þ,H þ K 0V 0��j0ðK 0Þi þ h0ðK 0Þj½X ,K 0V 0�j0ðK 0Þi ¼ 0: ð47Þ

The assumption is that a value of K 0 can be found which is small enough not to
perturb the ‘physical’ Coulomb wave function excessively (so that the second-order
correction for the use of the charge-overlap operator is adequate), but which is also
large enough to raise the energy of the ‘unphysical’ states above the energy of the
‘physical’ state.

The SIMPER-K method uses the same charge densities and dispersion energy
coefficients as SIMPER-P. The MP2 Coulomb interaction energy is obtained from
a Coulomb supermolecule calculation using the modified Hamiltonian H þ K 0V 0,
and the corrections �E

ð1Þ
Coul,HFðK

0Þ and �E
ð2Þ
Coul,HFðK

0Þ are calculated using
equations (45)–(47) and added to it. The MP2 exchange-repulsion interaction energy
is then defined as the difference between the MP2 supermolecule and Coulomb
interaction energies as usual, and the rest of the calculation proceeds in the same way
as the SIMPER-P method.
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The SIMPER-P and SIMPER-K methods are quite general, because the
definition of ‘low-level’ and ‘high-level’ (see for example equations (39) and (42))
can be changed as required. The specific use of MP2 supermolecule calculations,
CCSD charge densities, and TD-CISD dispersion energy coefficients is denoted by
SIMPER-1P and SIMPER-1K. In the SIMPER-1P method, truncation of the
perturbation expansion of the Coulomb interaction energy at the second or third
order is denoted by SIMPER-1P-2 or SIMPER-1P-3.

The Scaled Perturbation Theory (SPT) method, which preceded SIMPER, also
uses high-level dispersion energy coefficients and charge densities to improve low-
level calculations of a potential energy surface. However, the number of different
potential energy contributions which are separated and scaled in SPT is different
from SIMPER, and the scaling methods are not always the same.

In the SPT method [35], the MP2 supermolecule interaction energy is divided into
six contributions:

�EMP2 ¼ �E
ð1Þ
Coul,MP2 þ�E

ð2Þ
disp,MP2 þ�Eind,MP2

þ�E
ð1Þ
exch,MP2 þ�Eexch-ind,MP2 þ�Eexch-disp,MP2, ð48Þ

where the first-order Coulomb interaction energy and second-order dispersion
energy are the same as in equation (36). The induction energy is calculated using
finite-field methods [35]. The first-order MP2 exchange-repulsion interaction energy
is calculated by multiplying the first-order Hartree–Fock exchange-repulsion energy,
defined by equation (22), by the ratio of MP2 and Hartree–Fock electron density
overlap integrals. The MP2 exchange-induction interaction energy is calculated by
multiplying the Hartree–Fock exchange-induction interaction energy by the ratio
of MP2 and Hartree–Fock electron density overlap integrals. The Hartree–Fock
exchange-induction interaction energy is calculated by dividing the Hartree–Fock
supermolecule interaction energy into three contributions.

�EHF ¼ �EHL þ�E
ð2Þ
Coul,HF þ�Eexch-ind,HF: ð49Þ

The first two contributions are calculated directly, giving the Hartree–Fock
exchange-induction energy by subtraction. The MP2 exchange-dispersion interaction
energy is then obtained from the other six quantities in equation (48).

The energy contributions defined in equation (48) are then replaced by higher-
level terms. The first-order Coulomb interaction energy is replaced by the interaction
between high-level charge densities. The dispersion and induction interaction
energies are scaled by the ratio of the leading, spherically averaged, multipole
coefficients at high level and low (MP2) level, so for the dispersion energy,

�E
ð2Þ
disp, high ¼ �E

ð2Þ
disp,MP2C6, high=C6,MP2: ð50Þ

The first-order exchange-repulsion interaction energy is scaled by the ratio of the
high-level and low-level electron density overlap integrals, as in the SIMPER
method, but the exchange-induction and exchange-dispersion energies are not scaled.
SPT therefore resembles SIMPER-P, with the perturbation expansion in SIMPER-P
truncated at second order. However, the two methods have significant differences:
the dispersion energies are scaled differently, the induction energy is scaled in SPT
but not in SIMPER-P, and the first-order exchange-repulsion energy is scaled in
SPT, whereas the total exchange-repulsion energy is scaled in SIMPER-P.
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4. Results

In this section, the MP2 supermolecule energies and monomer properties which form
the input to the SPT and SIMPER methods are discussed. The collapse of the
Coulomb interaction energy to unphysical values is demonstrated, and methods by
which this is prevented in SIMPER-P and SIMPER-K are compared. Intermolecular
potential energy surfaces obtained using SPT and SIMPER are reviewed. The
agreement with potential energy surfaces derived from experiment, and the
agreement between spectroscopic constants obtained from SIMPER and experiment,
are shown to be comparable with potential energy surfaces calculated using
the best ab initio methods, and much better than results obtained from the MP2
supermolecule method, which requires a similar amount of computer time to
SIMPER and SPT.

4.1. A case study for weak interactions: the neon dimer
Table 1 shows the components of the MP2 intermolecular potential for the neon

dimer as a function of the intermolecular separation R, calculated using the SP-
aug-cc-pV5Z basis set. The MP2 Coulomb interaction energy is calculated without
making any correction for possible collapse of the Coulomb wave function to the
Pauli-forbidden state. The high-level first-order Coulomb interaction energy is
calculating using CCSD monomer charge densities. The first three dispersion energy
coefficients corresponding to the long-range limit of the MP2 intermolecular
potential, obtained from uncoupled Hartree–Fock frequency-dependent monomer
polarizabilities, are C6 ¼ 5:294, C8 ¼ 61:84 and C10 ¼ 866:4, and the high-level
(TD-CISD) dispersion energy coefficients are C6 ¼ 6:207, C8 ¼ 82:97 and
C10 ¼ 1234:8. The best literature value of C6 is 6.383, obtained from constrained
dipole oscillator strength distributions [86]. This differs by 21% from the MP2
value, but by only 3% from the TD-CISD value. The high-level Coulomb inter-
action energy is defined as �ECoul, high ¼ �ECoul,MP2 ��E

ð1Þ
Coul,MP2 ��E

ð2Þ
disp,MP2þ

�E
ð1Þ
Coul, high þ�E

ð2Þ
disp, high. The high-level exchange-repulsion interaction energy is

obtained by multiplying the MP2 exchange-repulsion energy by the ratio of CCSD
and MP2 charge density overlaps, and the total SIMPER intermolecular potential
is defined as �Ehigh ¼ �ECoul, high þ�Eexch, high.

Table 1. Contributions to the Ne-Ne intermolecular potential. Distances R are in Bohr,
energies are in microHartree.

R 5.5 6.0 6.5 7.0

�EMP2 �17.11 �83.20 �73.24 �52.71

�E
ð1Þ
Coul,MP2 �84.57 �24.38 �7.57 �2.52

�E
ð2Þ
disp,MP2 �306.48 �169.33 �98.37 �59.86

�ECoul,MP2 �395.60 �194.25 �105.94 �62.30
�Eexch,MP2 378.49 111.05 32.70 9.59

�E
ð1Þ
Coul, high �76.74 �21.84 �6.73 �2.23

�E
ð2Þ
disp, high �372.29 �206.90 �120.18 �72.89

�ECoul, high �453.58 �229.28 �126.91 �75.04
�Eexch, high 346.71 100.29 29.13 8.46
�Ehigh �106.87 �128.99 �97.78 �66.58
�ECCSDðTÞ �92.34 �125.94 �98.06 �67.50
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The results are typical of those obtained using SIMPER for dimers involving
helium, neon and small molecules. The MP2 intermolecular potential is about 50%
too small, compared to higher-level supermolecule calculations and to experiment
[87]. At the separations shown, there is no evidence of the expected divergence of
the Coulomb interaction energy. The Coulomb interaction energy is dominated by
the sum of the first-order Coulomb energy and the second-order dispersion energy.
The dispersion energy damping parameter b is found to be fairly independent of
separation, with values between 2.66 and 2.77 atomic units over the range of
separations shown. The modification of the dispersion energy is the most important
change to the MP2 intermolecular potential, but the exchange-repulsion also
decreases by a significant amount when it is scaled using the ratio of charge density
overlaps. The SIMPER potential energy surface is in much better agree-
ment with CCSD(T) supermolecule calculations, and with experiment, than is the
MP2 potential energy surface. The cost of the calculations is dominated by the
MP2 supermolecule and Coulomb interaction energies. The high-level frequency-
dependent polarizabilities of neon take a significant amount of time to calculate,
but they can be stored and re-used to produce potential energy surfaces for any
neon-containing dimer, without additional effort.

4.2. The collapse of the Coulomb interaction energy
The intermolecular potential calculated using SIMPER-K depends on the value

chosen for the parameter K 0. This is not an adjustable parameter of the method, and
it would not be appropriate to fit it to experimental data because the method is
designed so that the dependence of the intermolecular potential on K 0 is weak, except
at geometries where a Coulomb calculation with K 0 ¼ 0 gives an unphysical state. At
these geometries, the Coulomb energy is unphysically negative when K 0 ¼ 0, but as
K 0 is increased, the stability of the unphysical state decreases, and when K 0 passes
a critical value there is a sharp rise in the Coulomb interaction energy. Above this
critical value of K 0, the physical state is obtained from the Coulomb energy
calculation, and the dependence of the calculated energy on K 0 is fairly weak.
Evidently it is necessary to choose a value of K 0 larger than the critical value, but not
so large that the calculation is spoiled by higher-order terms in K 0.

It is difficult to calculate critical values of K 0, because the unphysical behaviour of
the Coulomb energy only occurs for large basis sets, and the calculations are difficult
to converge for lower values of K 0. Based on results for argon-containing dimers [88],
for which the critical value of K 0 at geometries high on the repulsive wall is about
2 atomic units, it was suggested that a value of K 0 ¼ 3 atomic units is reasonable,
and this value has been used in all subsequent work.

Figure 2 shows the unphysical collapse of the Coulomb interaction energy for the
argon dimer. These results are obtained using the aug-cc-pV5Z basis set. For the
SIMPER (dashed) curve, the exchange-repulsion interaction energy is defined by
equation (3). In general, the exchange-repulsion interaction energy is expected to
be approximately an exponentially decreasing function of separation, and strong
deviation of the plot from linearity at short distances indicates that the calculated
Coulomb energy is unphysical. Slight deviation from linearity at larger distances
arises mainly from the use of a finite basis set, but this is unimportant, because the
exchange-repulsion energy is small at these separations. The SIMPER-K method
described in section 3.2.2, using K 0 ¼ 3 atomic units, corrects the unphysical
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behaviour of the energy at all the separations shown, and gives an exchange-
repulsion interaction energy which is very close to exponential at short range.

4.3. Calculated potential energy surfaces
An early version of the SPT method was used to calculate a potential energy

surface for the interaction of helium with ammonia as a function of the three
intermolecular coordinates and the ammonia inversion coordinate [89]. The method
described in section 3.2.2 was used, but the exchange-induction and exchange-
dispersion energies were not included. The equilibrium geometry of the ammonia-
helium dimer was predicted to have Cs symmetry, with the helium atom about 6.1 a0
from the nitrogen atom, halfway between two N–H bonds. A first-order saddle point
occurs when the helium atom passes over an N–H bond, and second-order saddle
points are found when the helium atom is at either end of the molecule. The well
depth was predicted to be about 150 microHartree. This prediction was shown to be
within 2% of the results of high-level supermolecule calculations performed at the
MP4 and CCSD(T) levels. In contrast, the CCSD and CCSD(T) predictions differed
by over 20%. The main difference between the SPT and CCSD(T) results was found
to occur at the second-order stationary points, where the difference was up to 14%.

A similar method was used to calculate the potential energy surface for the
water–helium dimer [90]. An empirical correction factor of kn�6 was applied to each
dispersion energy coefficient Cn, since the errors in the low-level dispersion energy
coefficients are expected to increase with increasing n (see, for example, the
coefficients given in section 4.1 for the neon dimer). Without this correction, the
potential energy surface was found to be about 10% too shallow, but qualitatively
correct. The equilibrium geometry is planar, with the O!He vector nearly
perpendicular to the water symmetry axis. First-order saddle points occur when the
helium atom is at either end of the molecule, and there is a second-order saddle
point at a symmetrical non-planar geometry, with the helium atom directly over the
plane of the water molecule. To make the potential energy surface deeper, a value of

Figure 2. The exchange-repulsion interaction energy for the argon dimer calculated using
SIMPER (upper dashed curve) and SIMPER-K (lower solid curve).
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k ¼ 1:07 was chosen, to give agreement with a complete basis set extrapolation of the
CCSD(T) intermolecular potential near the equilibrium geometry, with the helium
atom 5.9 a0 from the oxygen atom. With this value of k, agreement within 3% was
found between the SPT and CCSD(T) potential energy surfaces at the other planar
stationary points, but at the non-planar stationary point the SPT surface was 20%
too shallow.

Intermolecular potential energy surfaces for the water–neon and water–argon
dimers were calculated using the SPT method, with explicit exchange-induction and
exchange-dispersion terms [91]. As the size of the rare-gas atom increases from
helium to argon, the calculated potential energy surface for the rare-gas–water
interaction becomes more strongly bound and flatter around the minimum, and
the equilibrium separation increases. With one fitted parameter, the agreement with
CCSD(T) calculations for water–neon and water–argon was much better than for
the water–helium interaction. The energies of all four stationary points of neon–
water agreed with CCSD(T) calculations to within 7%, and for argon–water the
maximum difference was 14%, but the SPT surface for argon–water is more strongly
bound than the CCSD(T) surface, and some of the 14% difference is expected to be
the result of using a finite basis set in the CCSD(T) calculations. The better
agreement between SPT and CCSD(T) potential energy surfaces for these dimers
than for the helium–water dimer is likely to be the result of treating the exchange-
induction and exchange-dispersion explicitly in the SPT method. Similarly, in recent
work on the water–hydrogen interaction [92], good agreement between SPT and
CCSD(T) calculations was obtained. The difference between the SPT intermolecular
potential and CCSD(T) supermolecule calculations extrapolated to the complete
basis set limit was only 2%, whereas literature potential energy surfaces differed by
up to 40% from each other and from the CCSD(T) calculations.

The most recent version of the SPT method, as described in section 3.2.2, was
first applied to the helium dimer [35]. For this interaction, the ‘high-level’ CCSD and
TD-CISD monomer properties are exact, within the limitations of the basis set.
The difference between SPT and exact calculations therefore tests the approxima-
tions made in the scaling of the different terms, mainly the exchange-repulsion and
dispersion damping. The agreement with near-exact ab initio calculations was found
to be better than 1%, provided that the SPT calculations were performed with a
basis set close to the basis set limit. These results therefore give considerable support
to the use of the overlap model for improving the calculation of the exchange-
repulsion interaction energy of Van der Waals dimers.

An early version of the SIMPER method was used to calculate intermolecular
potential energy surfaces for all six Van der Waals dimers of the rare-gas atoms
He, Ne and Ar [32]. This was the first time that the exchange-repulsion energy had
been calculated using equations (2) and (3). The exchange-repulsion energy was
scaled using the ratio of QCISD to MP2 electron density overlap integrals using
equations (42) and (30). High-level first-order Coulomb interaction energies were
calculated using QCISD charge densities. The dispersion energy was not expanded as
a damped multipole series. Instead, the SPT scaling shown in equation (50) was used.
The resulting well depths for He2, HeNe and Ne2 agreed with accurate literature
values within 2.3%, whereas the maximum discrepancy between CCSD(T) calcula-
tions and literature values was 3.6%. However, for the dimers containing argon
the agreement between SIMPER and literature values was worse, and the SIMPER
intermolecular potential for the argon dimer was 36% too shallow. This discrepancy
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can easily be understood. For the argon dimer, the MP2 C6 coefficient is 76.49

atomic units, which is higher than the TD-CISD value of 66.37, but all the higher Cn

coefficients are too low. For example, the supermolecule MP2 value of C8 is 1525

atomic units and the TD-CISD value is 1636 atomic units. Unlike the neon and

helium dimers, the use of equation (50) for the argon dimer reduces the dispersion

energy too much around the potential well region, where the higher dispersion

energy coefficients are important.

It is therefore necessary to use the more detailed SIMPER scaling of the

dispersion energy for the dimers containing argon, and the complete SIMPER

method described in section 3.2.2 was later developed and applied [93] to the same

six rare-gas dimers, and to the H2–Ne and H2–Ar dimers. Potential energy surfaces

for these dimers were calculated using the SIMPER and SPT methods. The mono-

mer charge densities were calculated using the QCISD method, and SP-aug-cc-pV5Z

basis sets were used for all the calculations. Some results from these calculations

are presented in table 2.

The SIMPER intermolecular potentials for the He–Ar, Ne–Ar and Ar2 inter-

actions were found to agree much better with literature potentials when the

improved dispersion scaling method was used. For Ar2, the difference in the well

depths decreased from 36% to less than 6%. The He–Ar and Ne–Ar intermolecular

potentials were in even closer agreement with literature potentials. The SPT

potentials also gave reliable values for the well depths, with the largest discrepancy

in well depths between SPT and literature values for the six rare-gas dimers being

5.5% for the Ne2 and Ne–Ar dimers. The SIMPER calculations were also compared

with supermolecule CCSD(T) calculations, and the largest difference in well depths

was found to be 5.7%, for the helium dimer. The CCSD(T) intermolecular potential

was less accurate than SIMPER for the helium dimer, as shown in table 2. The well

depths for the other five dimers differed by less than 3.2% between the SIMPER

Table 2. Summary of intermolecular potential well depths calculated using the MP2,
SIMPER and CCSD(T) methods, and reliable literature potentials obtained from
fitting to spectroscopy and other experimental data for the dimers. All dimers are
linear. Separations R are in Bohr, and refer to the Ar–F and Ne–F distances in the
HF complexes, and the distance from the rare-gas atom to the H2 bond centre in the H2

complexes. When the separation is given as Re, each potential energy surface is fitted,
and the fitted well depth is quoted. When the separation is given an explicit value, all
calculations are performed at this separation, which is close to the equilibrium
separation. Energies are in microHartree.

Dimer He2 Ne2 Ar2 Ar–H2 Ar–HF Ar–FH Ne–HF Ne–FH

R Re Re Re 6.7 6.40 6.32 Re Re

MP2 21.80 84.07 495.5 235.6 849 416 301 163
SIMPER [93] 35.60 133.1 430.1
SIMPER-K 430.1

[88]
240.4
[88]

1024
[88]

445
[88]

427
[94]

241
[94]

SIMPER-P2 [88] 443.7 241.1 1018 446
SIMPER-P3 [88] 445.0 242.6 1058 448
CCSD(T) 33.67 130.3 441.9 236.0 895 427 388 212
Literature 34.77

[95]
133.9
[87]

453.6
[96]

254.3
[65]

1003
[97]

490
[97]

403
[98]

228
[98]
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and CCSD(T) methods. In comparison, the MP2 supermolecule calculations, from
which the SIMPER potentials were derived, differed from CCSD(T) by between
50% and 60% for He2, He–Ne and Ne2, and between 12 and 23% for the three
argon-containing dimers. The SIMPER method of correcting MP2 supermolecule
calculations therefore produced an improvement of about one order of magnitude in
accuracy for these dimers, with very little extra expenditure of computer time.

For the H2–Ne dimer, similarly close agreement between the SIMPER and
CCSD(T) methods was obtained for both the linear and T-shaped geometries. Both
methods agreed well with an experimentally derived intermolecular potential [72].
The SPT method gave stronger binding by around 10%, and the MP2 method gave
about 40% less binding than the other methods. However, for the H2–Ar dimer, the
SIMPER method could not be used in the linear geometry, because the collapse of
the Coulomb energy to unphysical values occurred outside the equilibrium separa-
tion. The SPT method gave a deeper potential well than the experimentally derived
potential, but the CCSD(T) method gave a potential well which was shallower by
a similar amount. For the H2–Ar dimer, the MP2 and CCSD(T) intermolecular
potentials were in good agreement.

The SIMPER-P and SIMPER-K methods, described in section 3.2.2, were used
for the first time [88] to calculate intermolecular potential energy surfaces for Ar2,
Ar–H2 and Ar–HF. The calculated well depths are shown in table 2. In each case,
calculating the Coulomb interaction energy using the original SIMPER method gave
unphysical results. This behaviour is shown in figure 2 for the argon dimer. For Ar2,
the ‘collapse’ of the Coulomb interaction energy occurred inside the equilibrium
separation of about 7.1 Bohr, but for the other two dimers, an unphysical Coulomb
state was reached close to the equilibrium separation.

The SIMPER-P and SIMPER-K calculations were performed using CCSD
monomer charge densities, which are expected to be slightly more accurate than
QCISD densities. For the argon dimer, the well depth calculated using the
SIMPER-K and SIMPER-P methods was within 6% of the experimental potential,
and within 3% of supermolecule CCSD(T) results. In addition, it was demonstrated
that the Coulomb collapse was removed by both methods down to separations of
5 Bohr or less. The same encouraging results were found for the other two dimers. In
fact, for the linear and T-shaped geometries of Ar–H2 and Ar–HF, the SIMPER-P
method gave well depths consistently closer to experiment than the CCSD(T)
method, as shown in table 2.

The SIMPER-K,MP2 andCCSD(T)methods have recently been used to calculate
complete two-dimensional potential energy surfaces for Ne–HF [94]. The Ne–HF
dimer has two minima in the linear Ne–H–F and Ne–F–H geometries, at equilibrium
Ne–F separations of about 6 a0. Results of calculations at these geometries are shown
in table 2. The MP2 well depth is about 30% less than the CCSD(T) well depth, but
the difference between CCSD(T) and SIMPER-K is 14 and 10% in the two linear
geometries, and the difference between SIMPER-K and the experimentally derived
potential energy surface of Meuwly and Hutson [98] is about 6%. It is expected that
the main source of error in the SIMPER-K potential for Ne–HF, as well as for Ar–
HF, is in the induction energy, which is not improved from its MP2 value.

Using the calculated Ne–HF potential energy surfaces, the rotational and
intermolecular vibrational bound states for the Ne–HF and Ne–DF dimers were
obtained [94]. The theoretical spectra, calculated using differences between these
bound-state energies, were compared with high-resolution experimental Ne–HF and
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Ne–DF spectra by extracting 14 different spectroscopic constants [98] including
rotational constants, centrifugal distortion constants, Van der Waals stretching
and bending wavenumbers and Coriolis splittings. The overall accuracy of the
SIMPER-K, MP2 and CCSD(T) potential energy surfaces were then assessed using
two criteria. The first is the weighted RMS deviation 
1, defined by

ð
1Þ
2
¼

1

n

Xn
i¼1

½ðPi, calc � Pi, exptÞ=�i, expt�
2, ð51Þ

where Pi are the n¼ 14 different spectroscopic constants, and �i, expt are their
experimental uncertainties. This was the quantity used by Meuwly and Hutson
to fit their potential energy surface. The second criterion is the percentage RMS
deviation 
2, defined by

ð
2Þ
2
¼

1

n

Xn
i¼1

½100ðPi, calc � Pi, exptÞ=Pi, expt�
2: ð52Þ

The first quantity, 
1, tends to penalize poor agreement with rotational constants,
since the percentage experimental uncertainty is smallest for these, whereas 
2
penalizes poor agreement with Coriolis splittings, which are most sensitive to the
potential energy surface.

The results showed that the MP2 method is unsuitable to describe the bound
states of Ne–HF. Six of the 14 spectroscopic constants could not be obtained from
the MP2 intermolecular potential, because some of the bound states were missing.
Using equations (51) and (52) with the remaining n¼ 8 constants gave a weighted
deviation of 
1 ¼ 300 and a percentage deviation of 
2 ¼ 32:1.

In contrast to MP2, the SIMPER-K method predicted all the bound states, and
the calculated spectroscopic constants were in much better agreement with experi-
ment. The average deviations were 
1 ¼ 47 and 
2 ¼ 11:8. The worst agreement was
found for the Coriolis splittings of the J¼ 1 e and f states, which are 0.020 58 cm�1

and 0.022 98 cm�1 for Ne–HF and Ne–DF, respectively, and were calculated to be
0.028 56 and 0.018 97 cm�1 from the SIMPER-K intermolecular potential. Even
without correcting the induction energy, the SIMPER-K method gave results of
similar accuracy to the much more time-consuming CCSD(T) method, for which

1 ¼ 71 and 
2 ¼ 8:3. The high value of 
1 for the CCSD(T) method was a result of
the rotational constants tending to differ from experiment more than the SIMPER-K
rotational constants, although the maximum difference between calculated and
experimental rotational constants was found to be about 10% in each case.

5. Discussion and further work

For small molecules, intermolecular potentials can be calculated to an accuracy
of a few percent by careful consideration of all the contributions up to second order
in the intermolecular interaction, together with a more approximate representation
of higher-order terms. The supermolecule CCSD(T), SAPT and SIMPER methods
all fulfil these requirements. Supermolecule CCSD(T) calculations are the most
general, as they can be used for any type of interaction, including covalent bonding,
but they require the most computer time. SIMPER calculations are the quickest,
but like SAPT they are restricted to non-covalent interactions where the molecular
orbitals of the supermolecule are similar to the molecular orbitals of the individual
molecules.
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The SIMPER method involves dividing the supermolecule calculation of the
intermolecular potential into electrostatic, induction, dispersion and exchange-
repulsion contributions, then recalculating or scaling these contributions to a higher
level of theory using monomer properties. The supermolecule MP2 method is
currently used in the first step, but it would be possible to start from a higher level
of theory such as supermolecule CCSD(T), and this could further improve the
accuracy of the SIMPER method at the cost of significantly increased computational
effort. For example, the bonding in the carbon monoxide dimer is sensitive to
intramolecular correlation contributions to the first-order Coulomb interaction
energy which are not present in supermolecule CCSD(T) calculations [99, 100].
These could easily be included in the SIMPER method.

The strong dependence of calculated intermolecular potentials on the basis set
is well known. It is necessary to use basis sets which account for both the
intramolecular and intermolecular correlation. This requires basis functions with
high angular momentum and with a range of Gaussian exponents, because the
intermolecular correlation is represented better by more diffuse Gaussians with lower
exponents, whereas the intramolecular correlation requires Gaussians with higher
exponents. The SP basis sets described in this review are more efficient than the
standard augmented correlation-consistent basis sets for interactions dominated
by dispersion, but they are also more prone to linear dependence, and for larger
molecules it will not be possible to approach the basis set limit even using SP basis
sets. Techniques used to accelerate the convergence to the basis set limit include
using dimer-centred basis sets, basis functions in the middle of the Van der Waals
bond, and complete basis set extrapolation. These techniques have not yet been
applied to the SIMPER method, and it is not known whether they would be
successful. It may also be possible to use small basis sets for the supermolecule
calculations in SIMPER, and large basis sets to obtain the monomer properties,
but this also needs more investigation.

The use of monomer properties to improve the electrostatic, dispersion and
exchange-repulsion energies has been investigated. However, the induction energy is
not modified in the SIMPER procedure. For interactions dominated by induction,
when one or both of the molecules are polar, it will be important to improve the
MP2 induction energy. This should not present any major problems. The MP2
supermolecule energy already includes the MP2 response of one molecule to the
electrostatic potential generated by the Hartree–Fock charge density of the other. It
is straightforward to replace the Hartree–Fock charge density by the CCSD charge
density, for example, which should improve the induction energy significantly.
A smaller improvement could be obtained by changing the polarization propagator
from MP2 to higher level, but this would be considerably more difficult, and more
expensive in computer time. One possible problem with improving the induction
energy is that at very short range, the induction energy is affected by the ‘collapse’ of
the Coulomb wave function to the unphysical state, and there is close cancellation
between the induction and the exchange-induction energy in the supermolecule
calculations. Improving the induction energy without considering the exchange-
induction could make the situation worse in these extreme cases.

Since SIMPER calculations require relatively little computer time compared to
other methods of similar accuracy, it is interesting to consider whether the SIMPER
theory could be extended to larger molecules. The methods used to obtain the
high-level electrostatic and exchange-repulsion energies could be applied to any
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interacting molecules, as could the method suggested for improving the induction
energy. The only problem is the high-level dispersion energy, which depends on a
damped multipole series involving the intermolecular separation. For large
molecules, the intermolecular separation is not well-defined, and the damped
multipole series does not converge. An alternative method for obtaining the high-
order dispersion energy is therefore required. One possibility is to calculate it using
time-dependent density functional theory, using the method described by Misquitta
and coworkers [101, 102]. Alternatively, if the better reliability of post-Hartree–Fock
methods is required, it will be necessary to expand the dispersion energy as a sum of
damped multipolar interactions between atoms, by dividing the MP2 supermolecule
dispersion energy into atom–atom contributions, and calculating the dispersion
energy coefficients for each atom–atom interaction at low and high levels of theory.
At present, there appears to be no completely satisfactory way of doing this.

The properties of larger clusters and condensed phases depend on non-additive
interactions between more than two molecules. Intermolecular perturbation theory,
such as SAPT, can be applied to non-additive interactions [103–105], and because
the non-additive interactions are usually less important, the percentage accuracy
required for non-additive interactions is lower. However, the non-additive potential
energy surface depends on more coordinates, up to 12 for three molecules, and the
effort required to calculate the complete surface and fit it to an analytic form can be
overwhelming. It is almost always necessary to use a low level of theory to make the
calculations feasible, even for small molecules. It is therefore likely that the use of
methods like SIMPER to improve low-level calculations will become important in
the future for first-principles simulations of condensed phases.
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