
A General Geometric Representation
of Sphere-Sphere Interactions

Ho-Kei Chan, Eric B. Lindgren, Anthony J. Stace
and Elena Bichoutskaia

Abstract Ageneral geometric representation of sphere-sphere interactions is derived
using the bispherical coordinate system. It presents a dimensionless, scaled surface-to-
surface separation parameter s�, which is valid for all possible combinations of sphere
size and separation distance. The proposed geometric description is not limited to
sphere-sphere interactions, but also describes interactions that involve a point particle
or a plane. The surface-to-surface separation parameter approaches the limit of s� ¼ 1
if the radii of both spheres are much smaller than the actual surface-to-surface
separation distance s, i.e. in the limit of two point particles. On the other hand, the
geometric limit of s� ¼ 0 corresponds to two planes, namely when the radii of both
spheres are much larger than s.

Keywords Sphere-sphere interactions � Bispherical coordinates � Geometric
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1 Introduction

Much research has been carried out on pairwise interactions, notably in the area of
classical electrostatics [1–7], in which each interacting body is geometrically
described as a point particle, a sphere or a plane. As shown in Fig. 1, the geometries
include the interaction between a pair of point particles (as described by Coulomb’s
law in the case of two point charges), the interaction between two spheres, as well
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as four other geometric combinations drawn from the set of a point particle, a
sphere and a plane. Note that a point particle and a plane are defined as a sphere of
infinitely small and infinitely large radius, respectively.

While the absolute geometry of an indiviual point particle, sphere or plane is
mathematically well defined, the geometry of a pair of interacting objects can only
be described with respect to their surface-to-surface separation, which is denoted
here as a distance s. Note that an alternative description based on the centre-to-
centre separation distance would be ambiguous if one of the interacting objects is a
plane. We therefore introduce a dimensionless, length-scale independent parameter
s� that describes all possible combinations of sphere size and surface-to-surface
separation distance for a two-body system. Generally, a dimensionless separation
distance s� can be obtained by dividing the surface-to-surface separation s by a
characteristic length, l, that depends on the sizes of the interacting bodies and their
separation, i.e. s� ¼ s=l. For any given surface-to-surface separation s, a suitable
choice of the length l will allow one to determine, from s� ¼ s=l, whether a pair of
interacting objects is geometrically close to the limit of two point particles, the limit
of two planes, or neither of these limits. For a1 and a2 being the radii of the
interacting objects, any linear combination (or some other simple functions) of a1a2
or (a1 + a2) is not a suitable form for the length l, because as ai (i = 1, 2) approaches
infinity (one of the interacting bodies approaches the planar limit) the value of s�

would approach zero if the value of the other ai is non-zero. This implies that a
system close to the geometric limit of two interacting planes (a1 ≫ s and
a2 ≫ s) cannot be distinguished from a system containing only one plane. In this
paper, it is shown that a suitable choice of the length l can be derived from the
bispherical coordinate system [8, 9], which has recently been employed for a study
of electrostatic sphere-sphere [2, 10] and sphere-plane interactions [2].

Fig. 1 Different geometric combinations for pairwise interactions involving point particles,
spheres or planes
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2 Introduction to the Bispherical Coordinate System

In the bispherical coordinate system [8, 9] shown in Fig. 2 for a two-sphere system,
the position of any point X in space is described with reference to a pair of foci,
which are separated by a distance of 2a. The foci are defined as inverse points of
each other such that

d1c1 ¼ a21 ð1Þ

and

d2c2 ¼ a22: ð2Þ

The centre-to-centre separation h > 0 is given by

h ¼ sþ a1 þ a2 ¼ 2aþ c1 þ c2 ð3Þ

where s ≥ 0 is the surface-to-surface separation. The bispherical coordinates are
often denoted as (η, ξ, ϕ), where

Fig. 2 Schematic diagrams of the bispherical coordinate system. The diagram on the left
illustrates how the length quantities c1, c2, d1 and d2 are related to the inter-focal separation 2a and
to the centre-to-centre separation h, and the diagram on the right illustrates how the position of an
arbitrary point X in space is described with reference to the foci
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g � � ln
r1
r2

� �
; ð4Þ

n � h1 � h2 ð5Þ

and ϕ is an azimuthal angle about the axis that joins the centres of the spheres. They
are related to the Cartesian coordinates (x, y, z) as follows

x ¼ a sin n cos/
cosh g� cos n

; y ¼ a sin n sin/
cosh g� cos n

; z ¼ a sinh g
cosh g� cos n

: ð6Þ

The surface of each sphere is a surface of constant η, where the parameters

g ¼ g1 [ 0 ð7Þ

and

g ¼ �g2\0 ð8Þ

represent the surfaces of sphere 1 and sphere 2, respectively. In general, η is
positive for the upper half plane occupied by sphere 1 (z ≥ 0 or 0 ≤ θ ≤ π/2) and
negative for the lower half plane occupied by sphere 2 (z ≤ 0 or π/2 ≤ θ ≤ π).

3 Derivation of the Scaled Surface-to-Surface Separation

The interfocal separation 2a can be expressed as a function of h, a1 and a2. Using
Eqs. (1) and (2), together with

d1 ¼ c1 þ 2a ð9Þ

and

d2 ¼ c2 þ 2a; ð10Þ

two quadratic equations for c1 > 0 and c2 > 0, respectively, are obtained:

c21 þ 2ac1 � a21 ¼ 0 ð11Þ

and
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c22 þ 2ac2 � a22 ¼ 0; ð12Þ

with solutions

c1 ¼ �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a21

q
� 0 ð13Þ

and

c2 ¼ �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a22

q
� 0; ð14Þ

respectively. Substituting Eqs. (13) and (14) into Eq. (3) yields

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a21

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a22

q
ð15Þ

which implies

h2 � 2a2 � ða21 þ a22Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ a2ða21 þ a22Þ þ a21a

2
2

q
: ð16Þ

A further rearrangement of terms leads to the arrival of an expression for the inter-
focal separation:

2a ¼ 1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4 þ ða21 � a22Þ2 � 2h2ða21 þ a22Þ

q

¼ 1
ðsþ a1 þ a2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a1 þ a2Þ4 þ ða21 � a22Þ2 � 2ðsþ a1 þ a2Þ2ða21 þ a22Þ

q ð17Þ

which leads to

2a
s
¼ 1

sðsþ a1 þ a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ a1 þ a2Þ4 þ ða21 � a22Þ2 � 2ðsþ a1 þ a2Þ2ða21 þ a22Þ

q

¼ 1
ð1þ a01 þ a02Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a01 þ a02Þ4 þ ða021 � a022 Þ2 � 2ð1þ a01 þ a02Þ2ða021 þ a022 Þ

q ð18Þ

where a1′ ≡ a1/s and a2′ ≡ a2/s are relative measures of the radii of the interacting
spheres with respect to their surface-to-surface separation s. Equation (18) can be
written in the following form

2a
s
¼ 1

1þ 1
a01þa02

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ða01 þ a02Þ2
þ 4 1þ

1
a02
þ 2a01

� �

1þ a01
a02

� � þ
a01
a02

� �

1þ a01
a02

� �2

2
64

3
75

vuuuut ð19Þ

which implies
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lim
a02!1

2a
s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2a01Þ

q
: ð20Þ

According to Eq. (20), the ratio 2a/s diverges only if both a1′ and a2′ approach
infinity, which suggests that it can be used as a parameter to distinguish between
geometries of sphere-plane and plane-plane interactions. If a scaled surface-to-surface
separation s� � s=2a is considered, a normalized parameter that applies to all possible
combinations of sphere size and separation distance can be obtained, where it is

lim
a01 ! 0
a02 ! 0

s� ¼ 1 ð21Þ

for the interaction between two point particles, according to Eq. (18). Furthermore,

lim
a01 ! 0
a02 ! 1

s� ¼ 1
2

ð22Þ

corresponds to the interaction of a point particle with a plane, according to Eq. (20);
and

lim
a01 ! 1
a02 ! 1

s� ¼ 0 ð23Þ

Fig. 3 Schematic illustration of various geometries between the limits s� ¼ 0 to s� ¼ 1, for
s� � s=2a. The sphere radii in the given examples, which all correspond to a surface-to-surface
separation of s� ¼ 10 nm, are: (i) a1 = a2 = 0.5 m, (ii) a1 = 5 nm and a2 = 7.5 nm, and (iii)
a1 = a2 = 0.05 nm. At s� ! 0, the interacting system is close to the geometric limit of two planes,
and at s� ! 1, the system is close to the geometric limit of two point particles. The range of values
of s� from 0 to 1 corresponds to a continuum of all possible combinations of sphere size and
separation distance
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corresponds to the interaction between two planes. As illustrated in Fig. 3, for any
possible combination of sphere size and separation distance, the value of s� lies
within the range [0, 1]. A value of s� close to unity indicates that the system is close
to the geometric limit of two point particles, and a value of s� close to zero indicates
that it is close to the limit of two planes.

4 Graphical Representation of the Scaled
Surface-to-Surface Separation

Figure 4 illustrates how the scaled surface-to-surface separation s� depends on a1′
and a2′. As shown in Fig. 4a, each value of s� for 0\s�\1 does not correspond to a
unique geometry, but rather to a range of possible combinations of a1′ and a2′. If,
for example, a2′ increases while a1′ remains unchanged, the value of s� would
decrease. To return to the original value of s�, one can move in the direction of
decreasing a1′ until the contour line of the original value of s� is reached. Figure 4b
is a ln-ln plot of the same contour map, which illustrates a difference in the
dependence of s� on a1′ and a2′ between cases of s�\0:5 and cases of s� [ 0:5.
Consider the regime of s�\0:5: At any given value of s�, if a1′ increases indefi-
nitely, a2′ will decrease towards a finite value. If a2′ decreases towards zero while
a1′ increases indefinitely, the value of s� will instead approach 0.5 which describes,
among many others, a point-plane geometry. But if a2′ remains unchanged for
increasing a1′, the value of s� will decrease towards a finite value, which describes a
particular range of sphere-plane geometries.

Fig. 4 Contour maps of the scaled surface-to-surface separation s� � s=2a, showing its
dependence on a1′ and a2′ in (a), and on ln(a1′) and ln(a2′) in (b). The dimensionless parameter
s� approaches unity if the system is close to the geometric limit of two point particles at
a1′ = a2′ = 0. The values of s� ranging between 0 and 1 correspond to particular combinations of
a1′ and a2′. The ln-ln plot in (b) illustrates a difference in the behaviour of s� between cases of
s�\0:5 and cases of s� [ 0:5
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Now consider the regime of s� [ 0:5. At any given value of s�, if a1′ decreases
towards zero, a2′ will increase towards a finite value. If a2′ increases indefinitely
while a1′ decreases towards zero, the value of s� will approach 0.5, again for a
point-plane geometry. But if a2′ remains unchanged while a1′ decreases, the value
of s� will increase towards a limit which is less than unity, because in this case the
parameter s� describes only a particular range of point-sphere geometries but not the
geometric limit of a pair of point particles.

5 Conclusions

A dimensionless, scaled surface-to-surface separation distance s� 2 [0, 1] has been
derived from the bispherical coordinate system to describe geometries of sphere-
sphere interactions. It serves as a measure of how close a system of interacting
spheres is to the geometric limit of two point particles or two planes. A value close
to unity indicates that the system is close to the limit of two point particles, and a
value close to zero indicates that the system is close to that of two planes. This
approach applies to all possible combinations of sphere size and separation dis-
tance, including ambiguous cases where a description of the interacting bodies as
spheres becomes questionable.
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