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Abstract A general geometric representation of sphere-sphere interactions is derived
using the bispherical coordinate system. It presents a dimensionless, scaled surface-to-
surface separation parameter s*, which is valid for all possible combinations of sphere
size and separation distance. The proposed geometric description is not limited to
sphere-sphere interactions, but also describes interactions that involve a point particle
or a plane. The surface-to-surface separation parameter approaches the limit of s* = 1
if the radii of both spheres are much smaller than the actual surface-to-surface
separation distance s, i.e. in the limit of two point particles. On the other hand, the
geometric limit of s* = 0 corresponds to two planes, namely when the radii of both
spheres are much larger than s.

Keywords Sphere-sphere interactions - Bispherical coordinates - Geometric
description - Surface-to-surface separation - Inverse points

1 Introduction

Much research has been carried out on pairwise interactions, notably in the area of
classical electrostatics [1-7], in which each interacting body is geometrically
described as a point particle, a sphere or a plane. As shown in Fig. 1, the geometries
include the interaction between a pair of point particles (as described by Coulomb’s
law in the case of two point charges), the interaction between two spheres, as well
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Two point particles Point particle with a sphere Point particle with a plane

Two spheres Sphere with a plane Two planes
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Fig. 1 Different geometric combinations for pairwise interactions involving point particles,
spheres or planes

as four other geometric combinations drawn from the set of a point particle, a
sphere and a plane. Note that a point particle and a plane are defined as a sphere of
infinitely small and infinitely large radius, respectively.

While the absolute geometry of an indiviual point particle, sphere or plane is
mathematically well defined, the geometry of a pair of interacting objects can only
be described with respect to their surface-to-surface separation, which is denoted
here as a distance s. Note that an alternative description based on the centre-to-
centre separation distance would be ambiguous if one of the interacting objects is a
plane. We therefore introduce a dimensionless, length-scale independent parameter
s* that describes all possible combinations of sphere size and surface-to-surface
separation distance for a two-body system. Generally, a dimensionless separation
distance s* can be obtained by dividing the surface-to-surface separation s by a
characteristic length, /, that depends on the sizes of the interacting bodies and their
separation, i.e. s* = s/I. For any given surface-to-surface separation s, a suitable
choice of the length [ will allow one to determine, from s* = s/I, whether a pair of
interacting objects is geometrically close to the limit of two point particles, the limit
of two planes, or neither of these limits. For a; and a, being the radii of the
interacting objects, any linear combination (or some other simple functions) of a,a,
or (a; + a,) 1s not a suitable form for the length /, because as a; (i = 1, 2) approaches
infinity (one of the interacting bodies approaches the planar limit) the value of s*
would approach zero if the value of the other a; is non-zero. This implies that a
system close to the geometric limit of two interacting planes (a; »> s and
a, » s) cannot be distinguished from a system containing only one plane. In this
paper, it is shown that a suitable choice of the length / can be derived from the
bispherical coordinate system [8, 9], which has recently been employed for a study
of electrostatic sphere-sphere [2, 10] and sphere-plane interactions [2].
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2 Introduction to the Bispherical Coordinate System

In the bispherical coordinate system [8, 9] shown in Fig. 2 for a two-sphere system,
the position of any point X in space is described with reference to a pair of foci,
which are separated by a distance of 2a. The foci are defined as inverse points of
each other such that

dicy = a% (1)
and
drcr = a%. (2)
The centre-to-centre separation 7 > 0 is given by
h=s+a +a=2a+c +ac (3)

where s 2 0 is the surface-to-surface separation. The bispherical coordinates are
often denoted as (7, &, @), where

Fig. 2 Schematic diagrams of the bispherical coordinate system. The diagram on the left
illustrates how the length quantities ¢, ¢, d; and d, are related to the inter-focal separation 2a and
to the centre-to-centre separation /, and the diagram on the right illustrates how the position of an
arbitrary point X in space is described with reference to the foci
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= _In C—;) (4)
E=0,—0, (5)

and ¢ is an azimuthal angle about the axis that joins the centres of the spheres. They
are related to the Cartesian coordinates (x, y, z) as follows

asin{cos¢p ~ asin¢sing ~ asinhy

(6)

- coshn——cosé’y ~ coshn — cosé’Z ~ coshy —cos &’
The surface of each sphere is a surface of constant #, where the parameters
n=mn>0 (7)
and
n=—n,<0 (8)
represent the surfaces of sphere 1 and sphere 2, respectively. In general, # is

positive for the upper half plane occupied by sphere 1 (z = 0 or 0 < 8 < 7/2) and
negative for the lower half plane occupied by sphere 2 (z < 0 or 7/2 < 6 < 7).

3 Derivation of the Scaled Surface-to-Surface Separation

The interfocal separation 2a can be expressed as a function of 4, a; and a,. Using
Egs. (1) and (2), together with

dy=c+2a )
and
dy = ¢y + 2a, (10)
two quadratic equations for ¢; > 0 and ¢, > 0, respectively, are obtained:
¢l +2ac) —at =0 (11)

and
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5 +2acy; — a3 =0, (12)

with solutions

c1=—a+/a+a2>0 (13)
¢ =—-a+/d®+a3>0, (14)

respectively. Substituting Eqgs. (13) and (14) into Eq. (3) yields

and

h= az—i—a%—i—\/az—i—a% (15)

which implies

W —2a* — (a3 +a5) = 2\/a4 + a*(a} + &3) + atas. (16)

A further rearrangement of terms leads to the arrival of an expression for the inter-
focal separation:

1
2a = ; \/h4 + (& — 3 —212(a + a2)
1

4 2 ; (17)
:m\/(S-I-a] +a) + (a% —a%) —2(s+ a1 +a) (a% —I—a%)
which leads to
2a 1
s skstata) \/(s +a+a) + (@} — @) —2s+a +a)’ (@} + ) (18)
1

— 1+al+a/4+ a/z_a/22_21_|_al+a/zal2+a/2
ey V) + @ =B =201 4 )+ (af + )
where a," = ay/s and a,' = a,/s are relative measures of the radii of the interacting

spheres with respect to their surface-to-surface separation s. Equation (18) can be
written in the following form

1 /
2a 1 1 (—,+2a1)
4 _ / ,2+41+“2 - —
§ <1 +m> (al +a2) (1 +a_’1) (1 _|_a_l>

which implies
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2
lim — =2,/(1 +2d}). (20)
a,—oo §

2

According to Eq. (20), the ratio 2a/s diverges only if both a," and a," approach
infinity, which suggests that it can be used as a parameter to distinguish between
geometries of sphere-plane and plane-plane interactions. If a scaled surface-to-surface
separation s* = s/2a is considered, a normalized parameter that applies to all possible
combinations of sphere size and separation distance can be obtained, where it is

lim s =1 (21)
a,—0
a, — 0

for the interaction between two point particles, according to Eq. (18). Furthermore,

1
lim s ==
a, —0 2

/
a, — &

(22)

corresponds to the interaction of a point particle with a plane, according to Eq. (20);
and

Iim s =0 (23)
ay, — oo
ay — 00
(ii) (iii)
10 nm 10 nm
7.1, 0.54 0.99
0 0.5 1

Fig. 3 Schematic illustration of various geometries between the limits s* =0 to s* =1, for
s* = s/2a. The sphere radii in the given examples, which all correspond to a surface-to-surface
separation of s* = 10nm, are: (i) a; = a, = 0.5 m, (ii)) a; = 5 nm and a, = 7.5 nm, and (iii)
a; = a, = 0.05 nm. At s* — 0, the interacting system is close to the geometric limit of two planes,
and at s* — 1, the system is close to the geometric limit of two point particles. The range of values
of s* from O to 1 corresponds to a continuum of all possible combinations of sphere size and
separation distance
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corresponds to the interaction between two planes. As illustrated in Fig. 3, for any
possible combination of sphere size and separation distance, the value of s* lies
within the range [0, 1]. A value of s* close to unity indicates that the system is close
to the geometric limit of two point particles, and a value of s* close to zero indicates
that it is close to the limit of two planes.

4 Graphical Representation of the Scaled
Surface-to-Surface Separation

Figure 4 illustrates how the scaled surface-to-surface separation s* depends on a;’
and a,’. As shown in Fig. 4a, each value of s* for 0 <s* <1 does not correspond to a
unique geometry, but rather to a range of possible combinations of a;" and a,’. If,
for example, a,' increases while a;" remains unchanged, the value of s* would
decrease. To return to the original value of s*, one can move in the direction of
decreasing a,’ until the contour line of the original value of s* is reached. Figure 4b
is a In-In plot of the same contour map, which illustrates a difference in the
dependence of s* on a;' and a,' between cases of s* <0.5 and cases of s* > 0.5.
Consider the regime of s* <0.5: At any given value of s*, if a;’ increases indefi-
nitely, a," will decrease towards a finite value. If a," decreases towards zero while
a;' increases indefinitely, the value of s* will instead approach 0.5 which describes,
among many others, a point-plane geometry. But if a,’ remains unchanged for
increasing a,’, the value of s* will decrease towards a finite value, which describes a
particular range of sphere-plane geometries.

(@) (b),

In(a,')

In(a,’)

Fig. 4 Contour maps of the scaled surface-to-surface separation s* = s/2a, showing its
dependence on a;" and a,’ in (a), and on In(a;’) and In(a,") in (b). The dimensionless parameter
s* approaches unity if the system is close to the geometric limit of two point particles at
a;' = a' = 0. The values of s* ranging between 0 and 1 correspond to particular combinations of
a;" and a,'. The In-In plot in (b) illustrates a difference in the behaviour of s* between cases of

s* <0.5 and cases of s* > 0.5
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Now consider the regime of s* > 0.5. At any given value of s*, if a," decreases
towards zero, a," will increase towards a finite value. If a,’ increases indefinitely
while a," decreases towards zero, the value of s* will approach 0.5, again for a
point-plane geometry. But if a,’ remains unchanged while a," decreases, the value
of s* will increase towards a limit which is less than unity, because in this case the
parameter s* describes only a particular range of point-sphere geometries but not the
geometric limit of a pair of point particles.

5 Conclusions

A dimensionless, scaled surface-to-surface separation distance s* € [0, 1] has been
derived from the bispherical coordinate system to describe geometries of sphere-
sphere interactions. It serves as a measure of how close a system of interacting
spheres is to the geometric limit of two point particles or two planes. A value close
to unity indicates that the system is close to the limit of two point particles, and a
value close to zero indicates that the system is close to that of two planes. This
approach applies to all possible combinations of sphere size and separation dis-
tance, including ambiguous cases where a description of the interacting bodies as
spheres becomes questionable.
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