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Abstract: Interaction of non-rigid walls of double-walled carbon nanotubes is studied
within the Frenkel-Kontorova model. It reveals a clearly defined commensurate-
incommensurate phase transition. Parameter which determines this phase is calculated
for a set of double-walled nanotubes with non-chiral commensurate walls using ab
initio interwall interaction energies and elastic properties. Possibility of formation of
incommensurability defects in the commensurate phase is considered. The length of
the defects and energy of their formation are calculated. Principal scheme of strain
nanosensor based on the commensurate-incommensurate phase transition in double-
walled nanotube is proposed.
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INTRODUCTION

The discovery of carbon nanotubes is regarded as one of the most important
advances in materials in the latter part of the 20th century. A wide range of
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applications in nanoscale electronic, optical and magnetic devices can be
envisaged, ranging from logic elements to single-molecule sensing devices.
Experimental studies of arbitrary (1) and controlled by a manipulator (2)
relative motion of the walls in multi-walled carbon nanotubes (MWNTs)
reveal that the weak interwall interaction gives an extremely smooth solid-
solid interface. This unique property of MWNTs opens up the possibility of
using relative motion of the walls in mechanical nanodevices. Possible nano-
devices based on such motion have been proposed elsewhere: nanobearings
(3), constant-force nanosprings and free sliding telescopic arms (2),
nanogears (4), ultra-small switching devices (5) and gigahertz oscillator (6),
variable nanoresistor (7–9) and perforating nanodrill (7–9). Theoretical
modelling of the orientation and relative motion of the walls holds the key
to the success of these applications.

The most commonly used convention employs the term “commensurate
walls” for the walls which are commensurate with their structures obtained
by graphene plane mapping on a cylindrical surface with the bond lengths
kept constant. Otherwise, the walls are defined as incommensurate. However,
as shown in (10), the bond lengths of the walls of nanotubes slightly differ
from those in graphite, and for this reason the lengths of unit cells of
isolated commensurate walls will also be slightly different. The interwall
interaction in a double-walled carbon nanotube (DWNT) leads to the contrac-
tion (or expansion) of the walls and consequent change in the lengths of their
unit cells. This phenomenon has been studied in this paper using the Frenkel-
Kontorova (FK) model (11). It has been shown that the commensurate-incom-
mensurate phase transition may occur in DWNTs with commensurate walls.
In the commensurate phase of DWNT, the lengths of unit cells of constituent
walls become equal due to the interwall interaction. In the incommensurate
phase, the DWNT acquires a periodic structure of alternating long ‘near com-
mensurate’ regions and short regions of incommensurability defects (ID). For
the incommensurate phase of a DWNT, the length and energy of formation of
the ID are estimated and the parameter which defines the phase of a DWNT is
calculated. These estimations are based on Density Functional Theory (DFT)
calculations of the structure, elastic properties and barriers to relative motion
of the walls of DWNTs (10, 12).

The principal scheme of strain nanosensor based on the commensurate-
incommensurate phase transition in DWNT is proposed.

COMMENSURATE-INCOMMENSURATE PHASE
TRANSITION IN DWNTS: FRENKEL–KONTOROVA MODEL

Recently, the possibility of expansion of a SWNT as a result of interaction
with a graphite substrate has been suggested in (13). In this Section, we use
the FK model to investigate expansion and contraction of the walls in a
DWNT as a result of the interwall interaction. The ordinary one-dimensional
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FK model comprises a harmonic chain which imitates particles moving in a
spatially periodic potential. We extend the one-dimensional FK model to
the case of two interacting harmonic chains which correspond to two walls
of a DWNT.

If one of the interacting springs is expanded during the interaction causing
a change in its length, Dxa, and another is compressed with Dxb, then the
minimum elastic energy of the system with the combined change in the
length of both springs Dxaþ Dxb is given by

Uel ¼
mambðDxa þ DxbÞ2

2ðma þ mbÞ
ð1Þ

where ma and mb are elastic constants of expanded and compressed spring,
respectively. Potential energy of the system of two interacting chains of
particles connected by a spring with a periodic potential can be defined as

U ¼
X

n

mambðxanþ1 % xan % la þ lb % xbnþ1 þ xbnÞ
2

2ðma þ mbÞ

"
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where xn
a and xn

b are the coordinates of the nth particle in expanded and
contracted chains, respectively; W and c are the amplitude and period of the
interaction potential; la and lb are natural lengths of two chains. In terms of
dimensionless coordinate un ¼ (xn

a2 xn
b)/c, equation (2) can be re-written as

U ¼
X

n

mc2ðunþ1 % un % ldÞ2 þWð1% cos 2punÞ
$ %

ð3Þ

where

m ¼ mamb

ma þ mb

ld ¼
lb % la

c
ð4Þ

Within the continuum approximation, summation over particles in
equation (3) becomes an integration over n, and after having introduced a
new variables u0 ¼ u/2p and n0 ¼ n/2p ld, potential energy of the system (3)
can be brought into the standard form

U ¼ 1

2

ð1
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@u0
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þWð1% cos 2pu0Þ
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dn0
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In the systems, for which the interwall interaction energy can be
described by potential (5), the commensurate-incommensurate phase transition
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can occur (14–16). Namely, if we introduce the commensurability parameter
h as

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W

2mðcldÞ2

s

ð6Þ

a system corresponds to the commensurate phase if h . hc ¼ p/4, and it is in
the incommensurate phase if h , hc.

For a DWNT, all quantities which define the parameter h, i.e., the barrier
to relative sliding of the walls along the nanotube axis, W, the difference
cld ¼ lb2 la between natural lengths of non-interacting walls, and the
elastic constants ma and mb, fall on the translational period dz of the
interwall interaction energy surface. As the parameter h does not depend on
the period dz, the translational length of the unit cell of a DWNT, td, can be
conveniently taken as this length. As a result, the parameter h takes the form

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DUmzNm

2mdDt
2

s

ð7Þ

where DUmz is the barrier to relative motion of the walls along the nanotube
axis per one carbon atom of the movable wall, Nm is the number of atoms
in the unit cell of the movable wall, Dt ¼ ts

22 ts
1 is the difference between

the lengths of the unit cells of the walls, and md is defined in the same way
as the elastic constant m of the interacting springs of equation (4) with the
sole difference that m of (4) corresponds to the period of the interaction
potential, c, whereas md corresponds to the translational length of the unit
cell of a DWNT, td.

Let us consider the significance of the parameter h. The quantity Udif ¼
DUmzNm/2 is the difference (per unit cell of an infinite DWNT) between the
interwall interaction energy corresponding to the commensurate phase and
the energy of the fully incommensurate state. Elastic energy of a DWNT
(per unit cell) of the commensurate phase is

Uel ¼
mdDt

2

2
ð8Þ

Thus, the parameter h can be expressed in terms of the ratio of these energies,
H ¼ Udif /Uel, which characterizes the commensurate and incommensurate
phases of a DWNT

h ¼
ffiffiffiffiffiffiffiffiffi
Udif

2Uel

r
¼

ffiffiffiffi
H

2

r
ð9Þ

Now, the condition h . hc defining the commensurate phase of a DWNT takes
the form H .p 2/8 ¼ 1.234 . . . For all considered DWNTs, we calculate the
ratio H and tabulate the results in Table 1.
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All DWNTs studied in this paper, with the exception of the (4, 4)@(10,10)
DWNT, correspond to the commensurate phase. In general, DWNTs with
commensurate walls have extremely small barrier to relative sliding of the
walls if at least one of the walls is chiral (12, 17–20). For such DWNTs, the
value of the ratio H is very small and we conclude that these DWNTs do not
correspond to the commensurate phase. DWNTs with incommensurate walls
also do not comply with the commensurate phase. In this case, the ratio H is
very small due to a large difference in the lengths of the unit cells of the
walls, Dt.

The main characteristics of the phases of systems described by the
potential (5) are known (15, 16). Minimizing the energy @U/@un ¼ 0 for all
n in equation (3), we find a solution with no forces on particles

unþ1 % 2un þ un%1 ¼ %Wp

mc2
sin 2pu ð10Þ

In the continuum limit, equation (10) can be re-written as

d2u

dn2
¼ %Wp

mc2
sin 2pu ð11Þ

Solutions to equation (11) define the equilibrium configurations of the system.
The solution u(n)¼0 corresponds to the commensurate phase. In the incom-
mensurate phase, the structure of the system comprises a lattice of near-
commensurate sectors separated by narrow incommensurability defects.
When h ! hc, only one ID remains in the system, namely the defect
described by the following solution of equation (11)

uðnÞ ¼ 2

p
arctan exp pn

ffiffiffiffiffiffiffiffi
2W

mc2

s ! !

ð12Þ

Analytical solution du/dn of the FK model corresponding to
equation (12) can be viewed as a single static soliton which represents a

Table 1. Characteristics of the incommensurability defect in DWNTs

Nanotube H UID lID 1c

(4,4)@(10,10) 0.010+ 0.004 87+ 27
(5,5)@(10,10) 22.0+ 1.5 0.95+ 0.03 31.7+ 1.1 0.202+ 0.009
(9,0)@(18,0) 68.1+ 0.4 6.03+ 0.01 11.19+ 0.03 0.709+ 0.003
(10,0)@(20,0) 31.9+ 0.4 3.75+ 0.02 28.64+ 0.14 0.378+ 0.003

Ratio H characterizes the incommensurate and commensurate phases of a DWNT
and it is described in the text. UID (in eV) and lID (in nm) are the energy of
formation and the length of the defect. 1c (in %) is the minimum strain of the medium.
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distribution function of the strain in the system. In the case of DWNT,
equation (12) takes form

uðxÞ ¼ 2

p
arctan exp

2px

td

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DUmzNm

mdtd

s ! !

ð13Þ

Here, u(x) is a local relative shift of the walls in reference to the commensurate
state (we take into consideration c ¼ dz ¼ td/2 (10, 20). If h . hc, equation
(12) describes the ID that can occur in the commensurate phase of the
system. The occurrence of such IDs is analogous to the formation of
dislocations in ideal crystals.

Reference to equation (12) shows that the length of the ID should exceed
the effective value given by expression

lID ¼ c
du

dn

! "

n¼0

! "%1

ð14Þ

or

lID ¼ td
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdt

2
d

2DUmzNm

s

ð15Þ

We calculate the effective length lID of the ID for a set of DWNTs and tabulate
the results in Table 1.

We next estimate the minimum energy UID required to form the ID in the
commensurate state. Generally, if la = lb, numerical minimization of
equation (5) is required for calculation of the formation energy of the
ID (15). However, for all considered in this paper DWNTs in the commensu-
rate phase, the length ld is much less than unity (10). This suggests that for
these DWNTs, the energy UID is close to the formation energy of the ID
for la ¼ lb. In the case of la ¼ lb, the energy of the ID formation has been
derived analytically (11)

UID ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2m2W

p

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdt

2
dDUmzNm

p

p
ð16Þ

We use equation (16) to estimate the energies UID for DWNTs in commensu-
rate phase and present the results in Table 1. The energy UID of the ID
formation can be partitioned into two physically meaningful terms

UID ¼ UID
el þ UID

int ð17Þ

where Uel
ID is elastic strain energy of the chains and Uint

ID is the change in the
interwall interaction energy as a result of the commensurability loss. Note
that in the FK model, Uel

ID ¼ Uint
ID if la ¼ lb for any periodic potential
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describing the interaction energy of the system (21). The energy of the ID
formation remains the same whether the inner wall of a DWNT is
compressed and the outer wall is expanded or vice versa.

POSSIBLE APPLICATIONS OF THE FRENKEL–KONTOROVA
MODEL: STRAIN NANOSENSOR

The commensurate-incommensurate phase transition in DWNTs is defined
and controlled by the parameter H which depends on the barrier DUmz to
relative sliding of the walls and the difference Dt in the lengths of the unit
cells of the walls. In principle, electromechanical nanodevices based on the
change in the phase of a DWNT corresponding to this transition can be
elaborated.

We propose a new electromechanical device, called here a strain nanosen-
sor, in which a critical strain causes the commensurate-incommensurate phase
transition. Successful operation of the strain nanosensor requires the
parameter H to be close to the critical value of Hc. In the absence of any
strain applied to a DWNT, this condition corresponds to a DWNT being
near the commensurate-incommensurate phase transition, and as a result,
having non-chiral commensurate walls. The principal scheme of such nano-
sensor is shown on Figure 1. Parameter controlling operation of the nanosen-
sor is Dt. Nanosensor can be embedded into solid medium or mounted on solid
surface. It consists of three parts: two side parts which provide the transfer of
strain from the medium to the nanosensor, and the central part that registers
the critical strain. The outer wall of a DWNT with defects of atomic
structure on the side parts of the nanosensor provides a better adhesion
between these parts and the medium. Central part of the nanosensor should
have perfect structure. The inner wall of a DWNT with perfect structure is
placed at the center of the nanosensor. The length of the inner wall should
be less than the length of the central part of the nanosensor in order to
avoid interactions with the side (defected) parts of the outer wall. The strain
of the medium causes extension (or contraction) of the central part of the nano-
sensor and, as a result, the increase (or decrease) in the parameter Dt. At some
value of Dt (critical strain), the commensurate-incommensurate phase
transition takes place. Note that the difference Dt corresponding to the
phase transition increases with decreasing length of the inner wall.
Therefore, the nanosensor can be adjusted to a given critical strain by
selecting the length of the inner wall. To study a strain distribution, a set of
nanosensors adjusted to different critical values of strains can be produced
and embedded into the sample.

Since the length of the outer wall is fixed by the strain of the medium, the
commensurate-incommensurate phase transition takes place only in the inner
wall. In this case, md in equation (7) is replaced by the elastic constant of the
inner wall, ml, corresponding to the length of the unit cell of the inner wall.
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Equation (7) leads to the critical difference Dtc corresponding to the
commensurate-incommensurate phase transition in DWNTs defined as

Dtc ¼
2

ffiffiffi
2

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DUmzNm

m1

s

ð18Þ

We estimate the minimum strain of the medium as 1c ¼ Dtc/td. The proposed
nanosensor can measure values of strain of the medium which exceed the
critical value 1c. The calculated values of 1c are listed in Table I.

We suggest a possible method of registration of the commensurate-
incommensurate phase transition in DWNTs. At the phase transition, the
sudden change in average relative displacement of the walls takes place (for
example, see the calculations for 2D FK model (22)). The conductance of a
DWNT with non-chiral commensurate walls is determined by the relative dis-
placement of the walls (23). Thus, the conductance also exhibits the sudden
change at the phase transition. This change can be registered with the use of
the contacts shown on the Figure 1.

DISCUSSION AND CONCLUSIONS

Possibility of the commensurate-incommensurate phase transition in DWNTs
with non-chiral commensurate walls has been predicted. This phase transition
has been described using the Frenkel–Kontorova model, which was modified
for the case of a DWNT composed of two SWNTs with non-rigid walls and

Figure 1. Principal scheme of strain nanosensor.
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with close values of the length of unit cell. Parameter H, which determines the
commensurate phase of a DWNT, has been calculated using the DFT results of
(10) for the interwall interaction energies and elastic properties of DWNTs.
The value Hc ¼ p2/8, which defines the commensurate-incommensurate
phase transition, has been obtained for infinite DWNTs. It has been shown
that, if H is greater than the transition parameter Hc, DWNTs with non-
chiral commensurate walls correspond to the commensurate phase for
which the lengths of unit cells of constituent walls are equal.

This conclusion holds good for the DWNTs with relatively large radii,
for example, the (5,5)@(10,10), (9,0)@(18,0) and (10,0)@(20,0) DWNTs
and larger. DWNTs with non-chiral commensurate walls of small radii
(the (4,4)@(10,10) DWNT) correspond to the incommensurate phase. In
this case, the structure of a DWNT can be described as a lattice of near-
commensurate sectors separated by narrow areas of incommensurability
defects. Similarly to the formation of dislocations in ideal crystals, the incom-
mensurability defects can occur in the system while it is in the commensurate
phase. Recent high resolution transmission electron microscopy experiments
on DWNTs produced by high temperature treatment of C60@SWNT
peapods (24) show that the wall of nanotube can indeed elastically deform
to produce short commensurate segments. However, in this case the IDs are
not formed due to a large amount of defects of atomic structure occurred
during annealing of the peapods.

One of the quantity which defines the parameterH and, therefore, controls
the commensurate-incommensurate phase transition in DWNTs is the differ-
ence in the lengths of unit cells of the constituent walls. Thus if one of the
walls is compressed or expanded by external forces, this phase transition
can in principle occur. As a result, the average relative displacement of the
walls can undergo a sudden change. This phenomenon can be used for devel-
oping a new electromechanical nanodevice, a strain nanosensor. The nanosen-
sor is based on relative sliding of the walls along the DWNT axis. Attached to
any object, it records its extension or contraction.
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