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Abstract

Three ab initio methods, namely MP2, CCSD(T) and SIMPER-1K, are used to calculate the intermolecular potential between

neon and a rigid HF molecule. The energies of Van der Waals rovibrational bound states are calculated from the potential energy

surfaces, and compared with previously published high-resolution spectra. The MP2 method does not predict all the observed bound

states, but the SIMPER-1K and CCSD(T) methods both give good agreement with the experimental results. Using the SIMPER-1K

method, rotational constants differ from experiment by less than 10%, stretching and bending frequencies by less than 3% and

centrifugal distortion constants by less than 4%.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

The thermodynamic, spectroscopic and structural

properties of Van der Waals molecules depend mainly

on their intermolecular interactions, and obtaining the

intermolecular potential energy surfaces to sufficient

accuracy is an important and difficult scientific problem.

Van der Waals molecules are usually weakly bound and

highly non-rigid, so it is necessary to know the potential
energy at a wide range of different bond lengths and

angles, not just around the Van der Waals minimum.

This means that hundreds or thousands of data points

(either points on the potential energy surface, or ex-

perimental data related to it) are often required to

characterise the potential energy surface satisfactorily.

High-resolution spectroscopy of cold gas-phase Van

der Waals molecules provides the most precise infor-
mation on intermolecular potential energy surfaces.

Transition wavenumbers involving rotation, bending

and stretching of Van der Waals bonds can be measured
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to a precision of better than 0.1%. However, the small
number of bound vibrational states of most Van der

Waals molecules limits the number of spectral transi-

tions which can be measured, and it is seldom possible to

deduce the complete multidimensional potential energy

surface (or even simple features such as the position of

the potential energy minimum) from experimental data.

Theoretical methods have therefore been used ex-

tensively alongside experiments in attempting to obtain
intermolecular potential energy surfaces. In principle,

quantum chemistry gives the intermolecular potential

exactly, as the difference between the dimer and isolated

monomer energies. However, methods which have been

developed mainly for covalent molecules do not work

well for Van der Waals molecules. Self-consistent-field

and density-functional theories predict no Van der

Waals bonding, and the missing electron correlation is
only recovered as a slowly converging function of order

in many-body perturbation theory, or of excitation level

in coupled-cluster theory. The additional need to use

large, polarised basis sets with diffuse functions makes

calculations of individual interaction energies expensive,

and accurate calculation of a complete surface is a very

demanding, often impossible, task. Spectroscopic accu-

racy is not achieved with computationally feasible cal-
culations. Therefore, it is common practice to adjust the
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results of quantum chemical calculations to obtain bet-

ter agreement with experimental data [1–6]. This may

involve changing the depth of the calculated potential,

or the equilibrium separation, or both. The advantage of

these partly-empirical ‘morphing’ methods is that a
complete potential energy surface is obtained, even with

limited experimental data. The disadvantage is that

some fitting to experimental data is required, which re-

duces the applicability of the method to systems already

studied experimentally, and the fitting method is inevi-

tably arbitrary, and would generally be difficult to apply

to larger molecules.

The main purpose of this Letter is to compare three
methods for direct (non-empirical) quantum-mechanical

calculation of intermolecular potentials, and assess their

accuracy compared with ‘morphed’ potentials and with

experiment. The NeHF and NeDF dimers are chosen

for this comparison. They are Van der Waals molecules

for which high-resolution experimental data and a high-

quality ‘morphed’ potential energy surface are available

[6], and bound-state calculations can be performed to
high precision, such that discrepancies with experiment

can be ascribed entirely to the potential energy surface.

The Van der Waals binding in these dimers depends on a

delicate balance between dispersion, induction and ex-

change-repulsion, and the dimers are small enough to

allow correlated ab initio methods to be used, with large

basis sets.
2. Calculations and results

Potential energy surfaces are calculated using MP2

and CCSD(T) supermolecule methods with the MOL-OL-

PROPRO package [7], applying the full counterpoise correc-

tion [8], with the SP-aug-cc-pV5Z basis set [9,10], giving

a total of 334 basis functions for the complex. This basis
set is believed to be close enough to the complete basis

set limit that the different methods can be fairly com-

pared (see below). A polar co-ordinate system is used, in

which R is the Ne–F distance, and h is the angle between

the H!F and Ne!F vectors. The H–F distance is

fixed at its equilibrium value, 1.73291 a0; the effect on

the potential energy surface of changing the H–F bond

length is considered below. Calculations are performed
at nine distances, (R=a0)¼ 4 (1) 10, 5.5 and 6.5, and

seven angles, h ¼ 0 (30) 180�.
The SIMPER-1K method (Systematic InterMolecu-

lar Potential Extrapolation Routine, version 1K) is used

to extrapolate the MP2 supermolecule calculations. The

same basis set is used for SIMPER-1K as for the other

calculations. The method has already been described

[11], so only a brief summary is given here. The first-
order Coulomb interaction energy at the MP2 super-

molecule level is removed from the MP2 supermolecule

energy and replaced by a first-order Coulomb energy
calculated from CCSD monomer charge densities. The

dispersion energy at the MP2 supermolecule level is re-

placed by a higher-level dispersion energy, which is

calculated using long-range coefficients Cn, obtained

from TD-CISD frequency-dependent polarizabilities,
and short-range damping functions, obtained by scaling

the length co-ordinate in the damping functions by the

ratio ðC6=C8Þ1=2. The exchange-repulsion energy at

the MP2 supermolecule level is scaled by the ratio of the

charge density overlap at the CCSD monomer level and

the MP2 supermolecule level. Finally, the remaining

Coulomb energy in the MP2 supermolecule calculation

is retained without any scaling; this includes the induc-
tion energy. Adding the first-order CCSD Coulomb

energy, the higher-level dispersion energy, the scaled

exchange-repulsion energy, and the remaining MP2

Coulomb energy, gives the SIMPER-1K potential en-

ergy surface.

Much of the difference between the MP2 and SIM-

PER-1K potentials can be ascribed to the different

treatment of the dispersion interaction. For example, the
C6 dispersion energy coefficient is given in atomic units

by C6 ¼ 9:27þ 0:80 P2ðcos hÞ in the supermolecule MP2

calculation, and by C6 ¼ 10:72þ 0:70 P2ðcos hÞ in the

SIMPER-1K calculation. Consequently, at the equilib-

rium Ne–H–F geometry the SIMPER-1K dispersion

energy is about 22 cm�1 more negative than the MP2

dispersion energy.

To obtain a full two-dimensional potential energy
surface, which is suitable for calculating bound states,

the dependence of the interaction energy on the angle h
is expanded as a series of Legendre polynomials

EðR; hÞ ¼
Xlmax

l¼0

ElðRÞPlðcos hÞ; ð1Þ

with lmax ¼ 6. Each Legendre component of the poten-

tial, ElðRÞ, is then fitted using

ElðRÞ ¼ A expð�BRÞ � CðRþ X Þ�n � DðRþ X Þ�n�2
:

ð2Þ

The value n ¼ 6 is used for l ¼ 0 and l ¼ 2, n ¼ 7 for
l ¼ 1 and l ¼ 3, n ¼ 8 for l ¼ 4, n ¼ 9 for l ¼ 5, and

n ¼ 10 for l ¼ 6. The errors in this fit are usually about

0.1 cm�1 at the potential minimum, and are insignificant

compared to the differences between the potentials.

Unique values of the non-linear parameters B and X are

always found in the fits, and the values of all the fitted

parameters are physically reasonable.

The three fitted potential energy surfaces are plotted
in Fig. 1. This shows that the qualitative shape of the

potential energy surfaces is the same, with the deepest

well in the Ne–H–F linear geometry, a secondary min-

imum in the Ne–F–H geometry, and a transition state in

a roughly T-shaped geometry. The repulsive wall devi-

ates from spherical symmetry about the F nucleus by



Fig. 1. Contour plots of the Ne–HF potential energy surface, calculated using the three different methods described in the text: (a) SIMPER-1K; (b)

MP2; (c) CCSD(T). Contours are drawn at 300, 30 cm�1, zero, and intervals of 10 cm�1 below zero. Distances are in atomic units. The dotted circle

has a radius of 4.5 a0 and is centred on the F nucleus.
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about 0.6 a0 in each case, with the largest repulsion

being in the direction of the H nucleus. Significant

quantitative differences between the potential energy

surfaces are apparent from the figures, with the MP2
potential well being by far the most shallow, and the

CCSD(T) potential well being slightly more shallow

than the SIMPER-1K potential. The well depths and

equilibrium separations at the linear Ne–H–F minimum

and Ne–F–H secondary minimum are compared with

the best ‘morphed’ potential of Meuwly and Hutson [6]
Table 1

Comparison of potential well parameters calculated for Ne–H–F in two lin

potential [6]

MH SIMPER-1K

�e (Ne–H–F) 88.5 93.7

�e (Ne–F–H) 50.0 53.0

Re (Ne–H–F) 6.19 6.08

Re (Ne–F–H) 5.70 5.67

Interaction energy minima e are in cm�1, equilibrium distances Re are in
(MH) in Table 1. The positions and depths of the

SIMPER-1K and CCSD(T) potential energy minima

agree about equally well with the MH potential, al-

though the SIMPER-1K potential is slightly deeper, and
the CCSD(T) potential is slightly shallower. The ten-

dency of SIMPER-1K to overestimate the well depth

may be partly explained by the fact that the second-

order induction energy is not corrected in the SIMPER

method [11]. The results for the equilibrium distance in

the Ne–H–F geometry appear to be anomalous, as even
ear geometries, using three ab initio potentials and the morphed MH

MP2 CCSD(T)

66.1 85.1

35.7 46.6

6.26 6.15

5.88 5.75

atomic units (a0) and refer to the Ne–F distance.
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the CCSD(T) potential underestimates this quantity.

This is probably because the MH potential surfaces were

fitted to the experimental data for HF in its v ¼ 1 vi-

brational state, which increases the average HF bond

length, and therefore increases the anisotropy of the
repulsive wall.

Bound states for the MP2, CCSD(T) and SIMPER-

1K potentials are calculated using the program BOUND

[12,13]. Nine rotational functions, from J ¼ 0 to J ¼ 8,

are included in the angular expansion of the rovibra-

tional wavefunctions, with rotational constants of

19.787478 cm�1 for Ne–HF and 10.564179 cm�1 for

Ne–DF. The reduced masses are 9.999665 u for Ne–HF
and 10.24489 u for Ne–DF. The radial wavefunctions

are propagated between 4 and 20 a0, and the step size

used in the calculations is 10�4 a0, with a convergence

limit tolerance of 10�4 cm�1.

The calculated transition wavenumbers are compared

in Table 2 with experimental values and with the MH

potential energy surface giving the smallest overall de-

viation from experiment. Ne–HF has one excited Van
der Waals vibrational state, the p bend. Ne–DF also has

a R stretch and a R bend. The ground state and p bend

rotational constants (roughly equal to half the E1 � E0

transition wavenumbers) mostly contain information

about the radial minimum between h ¼ 0 and h ¼ 90�,
whereas the R bend rotational constant is a measure of

the location of the radial minimum at around h ¼ 180�.
The parameter D, which is approximately equal to the
Table 2

Comparison of transition wavenumbers for Ne–HF and Ne–DF, calculated u

experimental values and uncertainties d [14–16]

Transition Experiment d M

Ne–HF

Binding energy D0
a 3

v ¼ 0: E1 � E0 0.2989 0.0002 0

(�E2 þ 3E1 � 2E0)/24 ¼ D 1.970� 10�5 1.7� 10�7 1

p bend: E1f–E0 (v ¼ 0) 44.0340 0.01 4

E2f � E1f 0.5938 0.0004 0

E1e � E1f 0.0205800 0.0002 0

Ne–DF

Binding energy D0
a 35.1 0.76 3

v ¼ 0: E1 � E0 0.2961 0.0002 0

(�E2 þ 3E1 � 2E0)/24 ¼ D 1.608� 10�5 1.7� 10�7 1

R bend: E0 � E0 (v ¼ 0) 19.5295 0.01 1

EJ¼1 � EJ¼0 0.2689 0.0002 0

R stretch: E0 � E0 (v ¼ 0) 23.3811 0.01 2

E1 � E0 0.2382 0.0002 0

p bend: E1f � E0 (v ¼ 0) 27.2791 0.01 2

E2f � E1f 0.5830 0.0004 0

E1e � E1f 0.0229800 0.0002 0

Weighted RMS, r1 2

% RMS, r2 1

All transition wavenumbers and uncertainties are in cm�1. The dimensio
a not used in the RMS deviations.
bmissing bound states; not used in the RMS deviations.
centrifugal distortion constant, is sensitive to the radial

curvature of the potential around the minimum. The

difference between the J ¼ 1f and J ¼ 1e levels of the p
bend represents the Coriolis splitting.

The overall accuracy of the potential energy surfaces,
relative to experiment, is assessed by the weighted RMS

deviation r1, given by

r2
1 ¼

1

n

Xn

i¼1

½ðPi;calc � Pi;exptÞ=di;expt�2 ð3Þ

and by the RMS percentage deviation r2, given by

r2
2 ¼

1

n

Xn

i¼1

½100ðPi;calc � Pi;exptÞ=Pi;expt�2; ð4Þ

where n is the number of experimental values used in the
comparison, the ith experimental value is Pi;expt with

experimental uncertainty di;expt [6,14–16], and the cor-

responding calculated value is Pi;calc. The quantity r1 is

similar to that used by MH [6], and gives a guide to the

average accuracy of the theoretical calculations, com-

pared to the resolution of the experimental measure-

ments. The value of n is 14 for the CCSD(T) and

SIMPER-1K results, and 8 for the MP2 results. This is
because the MP2 potential energy surface is too shallow

to predict all of the bound states. Even disregarding this

fact, it is clearly seen that the CCSD(T) and SIMPER-

1K surfaces are superior in overall fit of the data, by a

factor of 4–6 in the weighted RMS deviation. Since the

MP2 surface also does not produce all the bound states,
sing three ab initio potentials and the morphed MH potential [6], with

H SIMPER-1K MP2 CCSD(T)

2.830 32.683 18.409 28.898

.2997 0.3003 0.2706 0.2916

.954� 10�5 2.023� 10�5 2.972� 10�5 2.160� 10�5

4.0716 44.4898 b 43.9214

.5936 0.5974 b 0.5795

.0194762 0.0285614 b 0.0171194

5.009 35.018 19.523 30.911

.2959 0.2907 0.2642 0.2829

.660� 10�5 1.647� 10�5 2.551� 10)5 1.782� 10�5

9.5380 19.2978 15.0181 19.2291

.2689 0.2949 0.1896 0.2844

3.3809 23.4722 17.9296 21.3463

.2377 0.2262 0.2575 0.2155

7.2533 27.9340 b 27.0403

.5823 0.5836 b 0.5662

.0232908 0.0189720 b 0.0194825

.55 43.60 268.18 66.80

.73 11.81 32.10 8.31

nless RMS deviations are defined in Eqs. (3) and (4).
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it can be seen that MP2 is not an adequate method to

describe this system theoretically.

CCSD(T) and SIMPER-1K perform at roughly the

same level. Depending on whether the weighted RMS

deviation or RMS percentage deviation is taken as the
measure of performance, either could be said to be

‘better’. The SIMPER-1K surface gives a weighted RMS

deviation which is about 1.5 times less than that of the

CCSD(T) surface. However, the performance of the

CCSD(T) surface is better by about a factor of 1.4 when

the RMS percentage deviation is considered. The

weighted RMS deviation penalises a prediction if it is

not accurate compared to the experimental uncertainty.
It is larger for the CCSD(T) surface, because this is less

accurate in some areas which are precisely known ex-

perimentally, such as rotational constants. On the other

hand, the SIMPER-1K surface is less accurate in areas

where the experimental precision is lower, particularly

the Coriolis splitting. The binding energies D0, which are

not included in the RMS deviations, are reproduced

more closely by SIMPER-1K. The SIMPER-1K well
depth is larger than the MH well depth by about 5 cm�1,

but this is cancelled almost exactly by the greater zero-

point energy obtained from the SIMPER-1K potential.

It should be emphasised that the SIMPER-1K surface is

produced without doing supermolecule calculations at a

higher level of theory than MP2. It thus takes an order

of magnitude less computer time than the CCSD(T)

surface.
In order to check that the results are sufficiently

converged with respect to the value of lmax chosen in Eq.

(1), calculations are performed using different values of

lmax, and the results are shown in Table 3. It can be seen

that the error estimates converge as the number of ex-

pansion functions increases, and that using a higher va-

lue of lmax is unlikely to change the relative performance

of the different methods. Generally, the agreement with
experiment improves or remains approximately constant

when lmax is increased, although the RMS percentage

deviation of the CCSD(T) surface is lowest when

lmax ¼ 2. This rather erratic convergence behaviour is

not particularly surprising, since the RMS deviations

tend to be dominated by one or two values.
Table 3

Convergence of the differences between ab initio predictions and experimenta

HF and Ne–DF, as a function of the maximum angular momentum lmax of t

lmax SIMPER-1K MP2

r1 r2 r1

2 43.42 21.69 269.26

3 42.23 13.01 267.91

4 43.36 11.91 268.14

5 43.59 11.82 268.18

6 43.60 11.81 268.18

The dimensionless RMS deviations r1 and r2 are defined in Eqs. (3) and
All the ab initio potential energy surfaces are con-

siderably less accurate than the morphed MH surface,

where experimental data are used to adjust the potential

energy surface and minimise the weighted RMS devia-

tion. The weighted RMS deviation of the MH surface is
a factor of between 18 and 28 better than the SIMPER-

1K and CCSD(T) surfaces. The RMS deviation (not

directly optimised by MH) is better by a factor of be-

tween 5 and 7. Using ‘morphing’ is possible when a

system is experimentally well characterised, like Ne–HF,

but it is limited in its applicability.
3. Conclusions

Differences between experiment and ab initio theory

are the result of basis set incompleteness, approxima-

tions made in calculating the electron correlation, the

assumption that the HF molecule is rigid, the neglect of

relativity, approximations made in calculating the

bound states, and errors in the experimental measure-
ments. In this work, different approximate methods for

calculating the electron correlation are compared, and

for this comparison to be valid, it is important that the

other errors are relatively small. It is reasonable to as-

sume that this is the case for any errors arising from

experiment, from neglecting relativity, and from the

bound-state calculations, but the effects of basis set in-

completeness and intramolecular non-rigidity may be
more significant.

Based on previous CCSD(T) calculations on Ne–H2O

[17] it is estimated that the use of a complete basis set

would reduce the equilibrium separation by less than

1%, and make the potential well deeper by about

1 cm�1. Vibrational averaging of the potential over the

intramolecular stretch co-ordinate is expected to in-

crease the equilibrium Ne–HF separation and the well
depth. Additional CCSD(T) calculations, with an HF

bond length of 1.79 a0 (which is approximately equal to

hr�2i�1=2 for HF in its v ¼ 1 state) indicate that the in-

crease in equilibrium Ne–HF separation is about 0.05

a0, and the increase in well depth is about 1.5 cm�1. The

effect is less for Ne–DF than for Ne–HF. Overall, basis
l measurements of the Van der Waals transition wavenumbers of Ne–

he Legendre polynomials used in the expansion of the potential energy

CCSD(T)

r2 r1 r2

33.27 74.64 7.31

32.22 67.85 8.10

32.02 66.91 8.29

32.12 65.97 8.42

32.10 66.80 8.31

(4).
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set incompleteness and vibrational averaging have sim-

ilar but opposing effects on the equilibrium separation,

and the total effect is small, relative to the difference

between the calculated potential energy surfaces. The

estimated total increase in the potential well depth of
about 2.5 cm�1 is more significant. However, it is less

than the difference of 8.6 cm�1 between the CCSD(T)

and SIMPER-1K potentials, and is only about 10% of

the difference between these potentials and the MP2

potential. Scaling the CCSD(T) potential energy by a

factor of 1.03, which increases the well depth by

2.5 cm�1, is found to improve the deviations from ex-

periment to r1 ¼ 57:7 and r2 ¼ 6:5, but the value of r1
is still larger than the SIMPER-1K value. The effect

of ‘morphing’ the SIMPER-1K potential has not been

investigated.

The SIMPER-1K method is therefore competitive

with the accuracy of the CCSD(T) method for weak

intermolecular interactions, and SIMPER-1K is faster

to use. The formal scaling of the computer time with

system size is N5 for MP2 and SIMPER-1K, and N7 for
CCSD(T). The MP2 method requires a similar amount

of computer time to SIMPER-1K, but the MP2 method

is inadequate for predicting spectroscopic constants and

bound states. The MP2 binding is too small, the p-bend
bound states are missing, and the vibrational frequencies

and rotational constants are both too low.

The high computational cost of using the CCSD(T)

method with a one-electron basis set near the complete
basis set (CBS) limit can be reduced by performing

calculations with two or more smaller basis sets and

attempting to extrapolate their results to the CBS limit.

The CBS extrapolation makes the results less reliable

than those obtained using a larger basis set, but is

generally considered to give an improvement over the

non-extrapolated results obtained using the smaller

basis sets in a case where the use of a large basis set is
infeasible. The cost of the SIMPER calculations could

also be reduced, by the same fraction as the cost of the

CCSD(T) calculations, using CBS extrapolation. There

are several plausible ways in which CBS extrapolation

could be applied within the SIMPER methodology,
but we have not yet pursued this line of investigation

further.

This work was supported by the Engineering and
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